The Power of Less: Harnessing Sparsity for Performance Optimization

Maryam Mehri Dehnavi University of Toronto Microsoft Research

http://www.paramathic.com

Sparsity is Everywhere

Machine Learning

Clustering

Science and Engineering

Graphics Simulations

Fluid Dynamics

The World is Built for Dense!

- Hardware utilization optimizations: prefetching, branch predictors, registers, caches, ...
- Compiler optimizations: tiling, unrolling, vectorization, parallelization, …
- Libraries: BLAS, LINPACK, LAPACK

3

Sparsity Pattern and Ratio

The pattern and location of non-zeros in a sparse matrix is called the **sparsity pattern** and the ratio of non-zeros over all the elements in the matrix is **density ratio**.

Dense A

Sparse B

Sparse C

Density Ratios in Machine Learning vs. Engineering

On average DNN matrices are 13x less sparse compared to scientific matrices.

Sparsity Patterns in Machine Learning vs. Engineering

Grid structure, physical properties, etc.

Density Ratio: 2%

Sparsity Patterns in Machine Learning vs. Engineering

Density Ratio: 2%

Computational Fluid Dynamics Problem Density Ratio: 98%

Sparsity Patterns in Machine Learning vs. Engineering

Sparsity is often <u>static</u> or moderately changes

Density Ratio: 2%

Weight sparsity <u>static</u> during inference

Computational Fluid Dynamics Problem Density Ratio: 98%

Engineering

There is no One-Size-Fits-All Approach!

Inspect sparsity patterns to automatically generate highly-optimized code for sparsity.

Thesis

Sparsity is often static or changes moderately in most simulations.

Key contribution

Part 1: Sparse Matrix Multiplication in ML & Engineering

Part 1

Matrix Multiplication routines

Part 1: Sparse Matrix Multiplication in ML & Engineering

<u>Part 1</u>

Matrix Multiplication routines

Machine Learning

Engineering

Part 1: Sparse Matrix Multiplication in ML & Engineering

A = WX

Part 2: Sparse Solvers in Engineering

LU factorization, forward-backward solvers, etc.

Solver routines

Inspect data dependence patterns for pruning and parallelism, etc.

CPU Memory Hierarchy

To compute A = Wx values must be moved up the memory hierarchy.

Temporal Locality

To compute A = Wx values must be moved up the memory hierarchy.

Temporal Locality: Reuse data while in fast memory.

Spatial Locality

To compute A = Wx values must be moved up the memory hierarchy.

Temporal Locality: Reuse data while in fast memory.

Spatial Locality: Access close-by data.

What's next!

a[1] += W[i] * x[1 * i].

Zero-Strided Access (Temporal locality)

Unit-Strided Access (Spatial locality)

a[1] += W[i] * x[1 * i].

Zero-Strided Access (Temporal locality)

Unit-Strided Access (Spatial locality)

Column 1 3 6

a[1] += W[i] * x[1 * i].

Zero-Strided Access (Temporal locality)

Unit-Strided Access (Spatial locality)

or i = 0...5 a[1] += W[i] * x[1 * i].

Zero-Strided Access (Temporal locality)

Unit-Strided Access (Spatial locality)

or i = 0...2a[1] += $W_c[i] * x[column[i]]$

Unknown stride Access

Strided Accesses in SpMV

Instruction Order

$$a[0] += W_{c}[0] * x[0];$$

$$a[0] += W_{c}[1] * x[2];$$

$$a[0] += W_{c}[2] * x[5];$$

$$a[1] += W_{c}[3] * x[1];$$

$$a[1] += W_{c}[4] * x[3];$$

$$a[1] += W_{c}[5] * x[6];$$

$$a[2] += W_{c}[6] * x[2];$$

$$a[2] += W_{c}[7] * x[4];$$

$$a[2] += W_{c}[8] * x[7];$$

for i = 0...3 {

$$a[i] += W_c[i*3] * x[i];$$

 $a[i] += W_c[i*3+1] * x[i+2];$
 $a[i] += W_c[i*3+2] * x[i+5];$

C

22

Strided Accesses in the New Code

Instruction Order

$$a[0] += W_{c}[0] * x[0];$$

$$a[1] += W_{c}[3] * x[1];$$

$$a[2] += W_{c}[6] * x[2];$$

$$a[0] += W_{c}[1] * x[2];$$

$$a[1] += W_{c}[5] * x[6];$$

$$a[2] += W_{c}[7] * x[4];$$

$$a[0] += W_{c}[2] * x[5];$$

$$a[1] += W_{c}[4] * x[3];$$

$$a[2] += W_{c}[8] * x[7];$$

Code

for i = 0...3 a[i] += W_c[i*3] * x[i]; for i = 0...3 $a[i] += W_c[i*3+1] * x[i+2];$ for i = 0...3 a[i] += W_c[i*3+2] * x[i+5];

Which Code to Generate?

for i = 0...3

$$a[i] += W_c[i*3] * x[i];$$

for i = 0...3
 $a[i] += W_c[i*3+1] * x[i+2];$
for i = 0...3
 $a[i] += W_c[i*3+2] * x[i+5];$

for i = 0...3 {

$$a[i] += W_c[i*3] * x[i];$$

 $a[i] += W_c[i*3+1] * x[i+2];$
 $a[i] += W_c[i*3+2] * x[i+5];$
}

Locality-aware Codelet Mining (LCM)

Vectorizing Sparse Matrix Computations with Partially-Strided Codelets, Cheshmi, Cetinic, Dehnavi [SC'22]

https://github.com/sparse-specialize/partially-strided-codelet

Minimum edge covering problem:

Minimum weight-set of edges guides permutation

+

A codelet cost model

Locality-aware Codelet Mining (LCM)

Vectorizing Sparse Matrix Computations with Partially-Strided Codelets, Cheshmi, Cetinic, Dehnavi [SC'22]

https://github.com/sparse-specialize/partially-strided-codelet

LCM on Science and Engineering Problems for SpMM

Testbed: 789 matrices from the SuiteSparse¹ repository on an Intel(R) Xeon(R) Gold 5115 CPU (20 cores, 64GB) main memory).

LCM is faster than Intel MKL² with an average speedup of 1.75x for Science and Engineering problems.

Engineering

¹T. A. Davis and Y. Hu, "The university of florida sparse matrix collection," ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1, pp. 1–25, 2011. ²Intel. 2022. Intel Math Kernel Library

LCM on Machine Learning Matrices

Testbed: Over 3000 matrices from Deep Learning Matrix Collection (DLMC¹).

Machine Learning

¹Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU Kernels for Deep Learning. SC '20.

LCM on Machine Learning Matrices

Testbed: Over 3000 matrices from Deep Learning Matrix Collection (DLMC¹).

¹Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU Kernels for Deep Learning. SC '20.

problems.

Cache Tiling for Machine Learning

array accesses!

*Working set size discussions in section 3.2 of Register Tiling for Unstructured Sparsity in Neural Network Inference [PLDI'23]

Register Tiling

Improve locality in registers!

Register Reuse with Dense

$$A_{\text{tile}} += W_{\text{tile}} * M_{\text{tile}} +$$

reg1	reg2
reg3	reg4
reg5	reg6
reg7	reg8
reg9	reg10
reg11	reg12

Register Reuse with Sparse

$$A_{\text{tile}} * M_{\text{tile}} *$$

- if $(W_{tile}[0,k])$ {
- if $(W_{tile}[1,k])$ {
- if $(W_{tile}[2,k])$ {

Overhead of if-conditions

reg1	reg2
reg3	reg4
reg5	reg6
reg7	reg8
reg9	reg10
reg11	reg12

Unclear which instructions will execute: no register reuse

If Tile Sparsity was Known

Generate Code for Each Possible Tile Pattern

Solution: Sparse Jam Solver

Register Tiling for Unstructured Sparsity in Neural Network Inference, Wilkinson, Cheshmi, Dehnavi [PLDI'23]

https://github.com/SpRegTiling

Code bloat

The Jamming Problem

$$+= W_{tile}[0, k] * X_{tile}[k, 0]$$

$$+= W_{tile}[0, k] * X_{tile}[k, 0]$$

$$A_{tile}[1, 0] += W_{tile}[0, k] * X_{tile}[k, 0]$$

$$A_{tile}[1, 0] += W_{tile}[1, k] * X_{tile}[k, 0]$$

$$A_{tile}[1, 1] += W_{tile}[1, k] * X_{tile}[k, 1]$$

$$A_{tile}[2, 0] += W_{tile}[2, k] * X_{tile}[k, 0]$$

$$A_{tile}[2, 1] += W_{tile}[2, k] * X_{tile}[k, 1]$$

$$+= W_{tile}[0, k] * X_{tile}[k, 0]$$

$$+= W_{tile}[1, k] * X_{tile}[k, 0]$$

$$+= W_{tile}[1, k] * X_{tile}[k, 0]$$

$$+= W_{tile}[2, k] * X_{tile}[k, 1]$$

Sparse-Jam Solver

Constraint 1: Ensure all operations are covered

 $x_i \in \{0, 1\}$

Constraint 2: Size of generated code $\leq CodeSizeLimit$

Sparse Register Tiling for Machine Learning

<u>Testbed</u>: **Deep Learning Matrix Collection (DLMC)**¹, a total of **2396 matrices.** A 20 core Cascadelake Xeon(R) Gold 6248 CPU with AVX512.

Sparse Register Tiling provides geomean speedup of 2.65×, 1.72× and 3.23× over MKL SGEMM, MKL SpMM (CSR) and ASpT² respectively.

Register Tiling on CPU

Register Tiling on GPUs

GPU Optimizations Needed to get to Registers

Sparse Register Tiling on GPUs?

Vertical tiles: register reuse on X

What About the Sparse Tensor Cores?

<u>2:4 Sparsity</u>: At most 2 elements out of every partition of 4 horizontally consecutive elements should be non-zeros

GPU Tile Decomposition

Tile Decomposition for Unstructured Sparse Model Inference, Liu, Shahsavan, Dehnavi [in-review]

GPU Tile Decomposition & Tile Scheduling

Tile Decomposition for Unstructured Sparse Model Inference, Liu, Shahsavan, Dehnavi [in-review] A Framework for Fine-Grained Synchronization of Dependent GPU Kernels, Jangda, et. al. [CGO'24]

Sparse Tile Decomposition on GPUs

Testbed: GPT Matrices from Flash-LLM¹, Nvidia RTX 3080 TI, NVCC 12.2

Tile Decomposition provides geomean speedup of 2.08×, 1.47× and 1.23× over CuBLAS (Tensor Cores enabled), SparTA², and Flash-LLM, respectively, for FP16 data type.

¹Flash-llm: Enabling cost-effective and highly-efficient large generative model inference with unstructured sparsity, Xia et. al. VLBD'23 ²SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute, Zheng et. al. OSDI'22

4

Speedup over CuBLAS

0

Gin

Sparsity Patterns in Machine Learning vs. Engineering

Solver routines LU factorization, forward-backward solvers, etc.

PART 2

Matrix Multiplication Routines vs. Solvers

Matrix Multiplication routines:

Can be computed independently

Solvers: e.g. sparse triangular system

Unknown

Matrix Multiplication Routines vs. Solvers

Matrix Multiplication routines:

Can be computed independently

Solvers: e.g. sparse triangular system

Inspect data dependence patterns for pruning and parallelism, etc.

Unknown

Solving a Sparse Triangular System

Find the solution to x, Lx = b where L is sparse lower triangular matrix.

Sparse Analysis in the Sparse Triangular System Solver

Sparse Analysis in the Sparse Triangular System Solver

Transforming the Sparse Code

Symbolically-Guided Code

```
for (px=0; px<RSsize; px++) {</pre>
                    "6
  j=reachset[px];
  x[j]/=Lx[Lp[j]]
  p=Lp[j]+1;
  for (; p<Lp[j+1]; p++)</pre>
    x[Li[p]]-=Lx[p]*x[j];
  }
```


Code Gen

Sparse Inspection and Code Transformations for Sparse Solvers

Sympiler [SC'17]: Inspects for single core optimizations, i.e. pruning, blocking, etc.

For Pruning

Node Equivalence for Blocking

Sparse Inspection and Code Transformations for Sparse Solvers

Sympiler [SC'17]: Inspects for single core optimizations, i.e. pruning, blocking, etc.

ParSy [SC'18] and HDAGG [IPDPS'22]: Create well balanced workloads for multicore execution.

www.sympiler.com

Load-Balanced Level Coarsening for Parallelism

Sparse Inspection and Code Transformations for Sparse Solvers

Sympiler [SC'17]: Inspects for single core optimizations, i.e. pruning, blocking, etc.

ParSy [SC'18] and HDAGG [IPDPS'22]: Create well balanced workloads for multicore execution

Sparse Fusion [SC'23]: Inspects the graphs of multiple operations to generate parallel fused code.

Lx = b

y = Ax

ParSy vs Competitors

Triangular Solve

ParSy is faster than Intel **MKL** with an average speedup of **2.5x**.

Testbed: SuiteSparse* repository on an Intel(R) Xeon(R) Platinum 8160 (Skylake).

Cholesky Factorization

ParSy is faster than **Pardiso** with an average speedup of **1.5x**.

There is no One-Size-Fits-All Approach!

Sparsity is often static or changes moderately in most simulations.

Inspect sparsity patterns to automatically generate highly-optimized code for sparsity.

Thesis

Key contribution

There is no One-Size-Fits-All Approach!

Sparsity is often static or changes moderately in most simulations.

Tweak the systems:

Relax sparsity-specific specialization

Runtime checks

Just-in-time compilation

Typically reduces our performance gains

Thesis

There is no One-Size-Fits-All Approach!

Thesis

Sparsity is often static or changes moderately in most simulations.

<u>Change the algorithms!</u>

- Constrained/unconstrained optimization in graphics
- Machine Learning Training

A Constrained Optimization Problem: QP Solvers

<u>NASOQ</u>: A Numerically Accurate Sparsity-Oriented Quadratic Program Solver [Siggraph'20]

$$\min_{x} \frac{1}{2} x^{T} H x + q^{T} x$$

$$Ax = b$$

$$Cx \leq d$$
Constraints

Objective

The Goldfarb and Idnani Algorithm

In the optimality phase, for each added or removed constraint a new KKT system has to be solved.

KKT matrix

Factorize the Updated KKT Matrix

The Goldfarb and Idnani Algorithm

Solving incrementally increasing KKT systems, has *large overheads* and thus leads to *poor scalability*.

KKT matrix

Factorize the Updated KKT Matrix

The Inclusive KKT Matrix in NASOQ

to solving the QP.

Objective and Constraints Matrices

NASOQ adds the symbolic information of all constraints to an *inclusive* KKT matrix prior

Inclusive KKT

Sparsity updates: the Optimality Phase

Constraints

For each added inequality constraint, the corresponding column in the inclusive KKT matrix and the dependence graph (elimination tree in this case) are activated.

Sparsity updates: the Optimality Phase

Inclusive KKT

Only the columns affected by the newly added constraint need to be numerically updated, the rest of the values are reused.

Results: NASOQ vs Others

NASOQ has the lowest **failure rate**

Gurobi is the baseline for speedups

Unconstrained Optimization Problem: Newton Solver for Contact

``Squeeze Out'' simulations from Incremental Potential Contact (IPC) simulator - https://ipc-sim.github.io/

For each frame: While $(q_k \text{ is not optimal})$ $d \leftarrow -H_k^{-1}g$ Compute step length t $q_{k+1} = q_k + t * d$ $H_{k+1} = \text{computeHessian}(H_k)$

Moderate Changes to the Hessian Sparsity

Gradual change in Sparsity

Nodes Involved in Contact

Parth (contact aware) Re-ordering

Parth: A Geometry and Re-ordering Aware Mesh Decomposition

Simulations are from Incremental Potential Contact (IPC) simulator - https://ipc-sim.github.io/

Arma Roller Simulation

IPC Simulations	Apple Accelerate	Intel MKL	CHOLI
Dolphin Funnel	2.95x	2.15x	1.97
Ball Mesh Roller	2.43x	1.87x	1.6
Mat On Board	2.08x	1.93x	1.72
Rods Twist	2.07x	1.87x	1.6
Squeeze Out	2.62x	2.28x	1.99
Arma Roller	1.33x	1.61x	1.5

On Intel Xeon with 20 cores and M2 pro with 12 cores

Sparsity in the Neural Network Inference: Forward Pass

Sparsity in the Neural Network Training: Forward/Backward Pass

DNN Training Algorithms with Static Pruning

non-zeros dropped to fit to 2:4 or desired sparsity

DNN Training Algorithms with Static Pruning

SLoPe: Sparse Plus Lazy Low-rank Pretraining of LLMs, Mozaffari, Yazdanbakhsh, Dehnavi, Submitted to [ICML'24]

Model	Bert-	GPT2-	GPT3-	GPT3-	GPT3-
	Large	Xlarge	Large	Xlarge	2.7B
Speedup (×)	1.09	1.12	1.13	1.11	1.10

Dataset	Dense	r = 0	<i>r</i> = 4	<i>r</i> = 16	<i>r</i> = 64
SQuAD v1.1	90.4	89.1	89.1	89.2	89.5
GLUE	80.2	77.4	77.7	77.8	78.2

BERT-Large-Uncased Accuracy Results, r is rank

DNN Training Algorithms with Static Pruning

Second-Order optimizers at backward pass

Stochastic Gradient Decent:

 $W \leftarrow W - \alpha \nabla \mathcal{L}(W)$

Natural Gradient Decent: $W \leftarrow W - \alpha F^{-1} \nabla \mathcal{L}(W)$

Second-Order optimizers for backward pass to control sparsity patterns:

> HyLo: A Hybrid Low-Rank Natural Gradient Descent Method, Mu, Soori, Dehnavi [SC'22]

> MKOR: Momentum-Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates, Mozaffari, Zhang, Dehnavi [NeurIPS'23]

Sparsification + quantization + rank-1 updates

MKOR reduces Bert training time vs. LAMB 2.57 times

Programmability!

Not another programming language!

Input to the Domain-Specific Compiler

Numerical Method Sparse matrix-vector multiplication (SpMV)

Sparsity info: Data Format, etc. e.g. A is in Compressed Row (CSR) format

79

Programmability!

Input Program (NPB Benchmark)

for(j = 0; j < lastrow - firstrow + 1; j++){ sum = 0.0;for(k = rowstr[j]; k < rowstr[j+1]; k++){</pre> sum = sum + A[k]*b[colidx[k]]; y[j] = sum;

Input to the Domain-Specific Compiler

Numerical Method Sparse matrix-vector multiplication (SpMV)

Sparsity info: Data Format, etc. e.g. A is in Compressed Row (CSR) format

Automatically Translating Non-affine (e.g. sparse) Codes

Input Program (NPB Benchmark)

Automatically Translating Non-affine Code

Rev: Automatically translating non-affine codes with branching bisimulation, Laird, Liu, Bjorner, Dehnavi, to appear at [PLDI'24].

Sparse computation data dependence simplification for efficient *compiler-generated inspectors, Mohammadi, et. al.*[PLDI'19].

Take Aways

Sparse Algorithms & Applications

Hardware

Take Aways

Sparse Algorithms & Applications

Compilers for sparsity

Hardware

84

Future!

Sparse Algorithms & Applications

http://www.paramathic.com

