
LLNL-PRES-854440

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

xSDK: an Ecosystem of Interoperable Independently

Developed Math Libraries

 Ulrike Meier Yang

September 20, 2023 Supercomputing Spotlights

2
LLNL-PRES-854440

Ecosystem: A group of independent but interrelated elements

 comprising a unified whole

Ecosystems are challenging!

What is an ecosystem?

“ We used to think that if we knew one, we knew
two, because one and one are two. We are finding
that we must learn a great deal more about 'and'. ”

− Sir Arthur Stanley Eddington (1892−1944), British astrophysicist

Effective ecosystem → Impact(ecosystem) > ∑ Impact (elements)

3
LLNL-PRES-854440

▪ Ecosystem of interoperable, but

independently developed math

libraries

▪ Goal:

Increase combined usability,

standardization and interoperability

of libraries, as needed to support

large-scale multiphysics and

multiscale problems

Extreme-Scale Scientific Software Development Kit (xSDK)

4
LLNL-PRES-854440

Outline

▪ Brief History of xSDK

▪ Software ecosystem and its elements
— xSDK libraries

— Spack package manager

— xSDK community policies

▪ Achieving an efficient ecosystem
— High Software Quality

— Portability

— Interoperability

— Sustainability

▪ Future Plans

5
LLNL-PRES-854440

History of xSDK

Next-generation scientific simulations
require combined use of independent
packages

▪ Prior to xSDK effort, many difficulties to build
required libraries into a single executable due
to many incompatibilities

▪ Installing multiple independent software packages
is tedious and error prone
— Need consistency of compiler (+version, options),

3rd-party packages, etc.
— Namespace and version conflicts make simultaneous

build/link of packages difficult

▪ Multilayer interoperability among packages
requires careful design and sustainable
coordination

xSDK history: Work began in ASCR/BER
partnership, Sept 2014

Needed for BER multiscale, multiphysics
integrated surface-subsurface hydrology models

hypre
SuperLU

Trilinos PETSc

Amanzi/ATS
Parflow

Crunchflow

PFLOTRAN

Alquimia

CLM

6
LLNL-PRES-854440

Interoperable Design of Extreme-scale
Application Software (IDEAS)

Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)

BER Lead: David Moulton (LANL)

ASCR/BER partnership ensures delivery of both crosscutting methodologies
 and metrics with impact on real application and programs.

Integration and synergistic advances in three communities
 deliver scientific productivity; outreach establishes a new holistic
 perspective for the broader scientific community.

www.ideas-productivity.org

6

Project began in Sept 2014, ended in Sept 2017

First-of-a-kind project:
qualitatively new approach based on making productivity and sustainability
the explicit and primary principles for guiding our decisions and efforts.

7
LLNL-PRES-854440

Continuation of xSDK in Exascale Computing Project (ECP)

ECP
Math

libraries

Performance
on new node
architectures

Extreme
strong

scalability

Advanced,
coupled

multiphysics,
multiscale

Optimization,
UQ, solvers,

discretizations

Interoperability,
complementarity:

xSDK

Improving library
quality,

sustainability,
interoperability

Next-generation
algorithmic
capabilities

Advances in data
structures for

new node
architectures

Toward predictive
scientific

simulations

Increasing
performance,

portability,
productivity

xSDK release
1

xSDK release
2

xSDK release
n…..Timeline:

• ECP: collaborative effort
of DOE-SC and NNSA

• Started in Oct 2016
• xSDK-ECP project

xSDK is key delivery
mechanism for ECP math
libraries continual
advancements toward
predictive science

8
LLNL-PRES-854440

Application
Development

Software
Technology

Hardware
and Integration

Scalable software
stack

Science and mission
applications

Relationships: facilities with
AD/ST, with vendors

Exascale Computing Project (ECP)’s holistic approach uses co-design
and integration to achieve exascale computing

Applications Co-Design

Software Ecosystem & Delivery

Development
Tools

Data & Visualization

Hardware interface

Programming
Models

Runtimes

Math
Libraries

Embedded
Data &

Visualization

Emphasis for this presentation

9
LLNL-PRES-854440

DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
HPE/AMD/NVIDIA

LANL/SNL
HPE/TBD

ANL
HPE/Intel

ORNL
HPE/AMD

LLNL
HPE/AMD

LANL/SNL
Cray/Intel Xeon/KNL

FY 2012 FY 2016 FY 2018 FY 2021

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia

Cori

Trinity

ThetaMira

Titan Summit

NERSC-9
Perlmutter

Aurora

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon/KNL

Sierra

FY 2024FY 2022

Exascale
Systems

Version 1.0
July 24, 2020

FY 2023

10
LLNL-PRES-854440

Combustion-Pele, EXAALT, ExaAM,
ExaFEL, ExaSGD, ExaSky, ExaStar,

ExaWind, GAMESS, MFIX-Exa,
NWChemEx, Subsurface, WarpX,

WDMApp, WarpX, ExaAM,
ATDM (LANL, LLNL, SNL) apps,

AMReX, CEED, CODAR, CoPA, ExaLearn
DTK

ECP AD Teams ECP Math Libraries

Examples:
• Subsurface: Chombo, PETSC, hypre, etc, …

• ExaAM: DTK, SUNDIALS, Tasmanian, hypre, Trilinos, FFT, etc.

• ExaWind: hypre, KokkosKernels, SuperLU, Trilinos, AMReX, etc.

• WDMApp: PETSc, hypre, SuperLU, STRUMPACK, FFT, etc.

• CEED: MFEM, MAGMA, hypre, PETSc, SuperLU, Sundials, etc.

• And many more …

MFEM

ECP applications need sustainable coordination among math libraries

11
LLNL-PRES-854440

SW engineering
• Productivity tools.
• Models, processes.

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.
• Reusable.

xSDK functionality, April 2016

Tested on key machines at ALCF, NERSC,
OLCF, also Linux, Mac OS X

xSDK History: Version 0.1.0: April 2016

Multiphysics Application C

Application B

April 2016
• 4 math libraries
• 1 domain

component
• PETSc-based xSDK

installer
• 14 mandatory

xSDK community
policies

Notation: A B:

A can use B to provide
functionality on behalf of A

https://xsdk.info

HDF5

BLAS

More
external
software

Application A

Alquimia

hypre

Trilinos

PETSc

SuperLU
xSDK

Installer

12
LLNL-PRES-854440

xSDK Version 0.8.0: November 2022

SW engineering
• Productivity tools.
• Models, processes.

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.
• Reusable.

xSDK functionality, Nov 2022

Tested on key machines at ALCF, NERSC,
OLCF, also Linux, Mac OS X

Multiphysics Application C

Application B

Impact: Improved code quality,
usability, access, sustainability

Foundation for work on
performance portability, deeper
levels of package interoperability

Each xSDK member package uses or can
be used with one or more xSDK packages,
and the connecting interface is regularly
tested for regressions.

https://xsdk.info

Application A

Alquimia

hypre

Trilinos

PETSc

SuperLU

PFLOTRAN

MFEM

SUNDIALS

HDF5

BLAS

More
external
software

STRUMPACK

SLEPc AMReX

PUMI

Omega_h

DTK TASMANIAN

PHIST

deal.II

PLASMA

November 2022
• 26 math libraries
• 2 domain

components
• 16 mandatory xSDK

community policies
• Spack xSDK installer

heFFTe

preCICE

ButterflyPACK

Ginkgo

libEnsemble

MAGMA

SLATE

ArborX

https://xsdk.info

HiOp

ExaGO

https://xsdk.info/

13
LLNL-PRES-854440

xSDK Elements

▪ Spack build manager

▪ Math libraries

▪ Community policies

14
LLNL-PRES-854440

▪ The xSDK packages depend on a number
of open-source libraries

▪ Spack is a flexible package manager
for HPC

▪ Spack allows the xSDK to be deployed
with a single command
— User can optionally choose compilers,

build options, etc.

The xSDK is using Spack to deploy its software

github.com/spack

https://spack.io

Spack

https://spack.io/

15
LLNL-PRES-854440

xSDK Libraries

PHIST

Omega_hDTK

• AMReX: Ann Almgren (LBNL)

• ArborX: Daniel Arndt (ORNL)

• DTK: Bruno Turcksin (ORNL)

• deal.II: Wolfgang Bangerth (Colorado State University)

• ExaGO: Shrirang Abhyankar (PNNL)

• Ginkgo: Hartwig Anzt (Karlsruhe Institute of Technology)

• heFFTe: Stan Tomov (UTK)

• HiOp: Cosmin Petra (LLNL)

• hypre: Rob Falgout, Ulrike Yang (LLNL)

• libEnsemble: Steve Hudson (ANL)

• MAGMA and PLASMA: Piotr Luszczek (UTK)

• MFEM: Tzanio Kolev (LLNL)

• Omega_h, PUMI: Cameron Smith (RPI)

• PETSc/TAO: Satish Balay, Todd Munson (ANL)

• preCICE: Frederic Simonis (Technical University Munich)

• SUNDIALS: Cody Balos, David Gardner, Carol Woodward (LLNL)

• SuperLU, STRUMPACK, ButterflyPACK: Sherry Li, Pieter

Ghysels, Yang Liu (LBNL)

• TASMANIAN: Miroslav Stoyanov (ORNL)

• Trilinos: Jim Willenbring (SNL)

• PHIST: Jonas Thies (DLR, German Aerospace Center)

• SLEPc: José Roman (Universitat Politècnica de València)

ButterflyPACK

ExaGO

HiOp

16
LLNL-PRES-854440

xSDK compatible package: must satisfy the mandatory xSDK
policies (M1, ..., M17)
Topics include configuring, installing, testing, MPI usage, portability, contact and version
information, open-source licensing, namespacing, documentation, public repository access

Also specify recommended policies, which currently are
encouraged but not required (R1, ..., R8)

Topics include error handling, freeing system resources, and library dependencies

xSDK: https://xsdk.info
Building the foundation of an extreme-scale scientific software ecosystem

xSDK community policies: Help address challenges in interoperability and sustainability of software

developed by diverse groups at different institutions

xSDK member package:
(1) Must be an xSDK-compatible package, and
(2) it uses or can be used by another package in the xSDK, and the

connecting interface is regularly tested for regressions.

xSDK policies 1.0.0: Feb 2023

• Facilitate combined use of
independently developed packages

Impact:

• Improved code quality, usability, access,
sustainability

• Foundation for work on deeper levels of
interoperability and performance
portability

We encourage feedback and
contributions!

https://github.com/xsdk-project/xsdk-community-policies

https://xsdk.info/
https://xsdk.info/
https://github.com/xsdk-project/xsdk-community-policies

17
LLNL-PRES-854440

xSDK community policies
https://github.com/xsdk-project/xsdk-community-policies

Mandatory xSDK policies: must be satisfied

M1. Support portable installation through Spack
 (includes xSDK Spack variant guildelines)

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously called

packages.

M7. Come with an open-source license.

M8. Provide a runtime API to return the current version number of the software.

M9. Use a limited and well-defined symbol, macro, library, and include file name

space.

M10. Provide publicly available repository.

M11. Have no hardwired print or IO statements.

M12. Allow installing, building, and linking against an outside copy of external

software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

M14. Be buildable using 64-bit pointers. 32 bit is optional.

M15. All xSDK compatibility changes should be sustainable.

M16. Have a debug build option.

M17. Provide sufficient documentation to support use and further

development.

Recommended xSDK policies: currently

encouraged, but not required
R1. Provide at least one validation test that can be invoked

through Spack.

R2. Possible to run test suite under valgrind in order to test for

memory corruption issues.

R3. Adopt and document consistent system for error

conditions/exceptions.

R4. Free all system resources it has acquired as soon as they

are no longer needed.

R5. Provide a mechanism to export ordered list of library

dependencies.

R6. Provide versions of dependencies.

R7. Have README, SUPPORT, LICENSE, and CHANGELOG

file in top directory.

R8. Provide version comparison preprocessor macros.

xSDK member package: Must be an xSDK-compatible
package, and it uses or can be used by another package in the
xSDK, and the connecting interface is regularly tested for
regressions.

We welcome feedback.
What policies make sense

for your software?

https://xsdk.info/policies Version 1.0.0,

February 2023

https://github.com/xsdk-project/xsdk-community-policies
https://github.com/xsdk-project/xsdk-community-policies
https://xsdk.info/policies

18

Adding, Changing, Retiring Community Policies
• xSDK policies are reviewed and, if needed,

updated regularly

• Changes in policies maybe needed due to
software and/or hardware changes

• Recommended policies may migrate to
become mandatory ones

• To maintain community, members have to
agree on the set of policies or any changes
over time

• xSDK team members seek input from the
larger community of users and arrive at
consensus (or majority) how to take the
feedback into account

Seek community input

Discuss feedback

Consensus vote

https://github.com/xsdk-project/xsdk-community-policies

https://github.com/xsdk-project/xsdk-community-policies

19
LLNL-PRES-854440

Compatibility with xSDK community policies

To help developers of packages

who are considering compatibility with

xSDK community policies, we provide:

▪ Template with instructions to

record compatibility progress

▪ Examples of compatibility status for

xSDK packages

— Explain approaches used by other

packages to achieve compatibility with

xSDK policies

▪ Available at
https://github.com/xsdk-project/xsdk-policy-compatibility

https://github.com/xsdk-project/xsdk-policy-compatibility

20
LLNL-PRES-854440

What is required for an effective ecosystem?

▪ High software quality

▪ Portability

▪ Interoperability

▪ Sustainability

21

Software Quality

Mandatory xSDK policies: must be satisfied

M1. Support portable installation through Spack
 (includes xSDK Spack variant guildelines)

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously called

packages.

M7. Come with an open-source license.

M8. Provide a runtime API to return the current version number of the software.

M9. Use a limited and well-defined symbol, macro, library, and include file

name space.

M10. Provide publicly available repository.

M11. Have no hardwired print or IO statements.

M12. Allow installing, building, and linking against an outside copy of external

software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

M14. Be buildable using 64-bit pointers. 32 bit is optional.

M15. All xSDK compatibility changes should be sustainable.

M16. Have a debug build option.

M17. Provide sufficient documentation to support use and further

development.

Recommended xSDK policies: currently

encouraged, but not required
R1. Provide at least one validation test that can be invoked

through Spack.

R2. Possible to run test suite under valgrind in order to test

for memory corruption issues.

R3. Adopt and document consistent system for error

conditions/exceptions.

R4. Free all system resources it has acquired as soon as they

are no longer needed.

R5. Provide a mechanism to export ordered list of library

dependencies.

R6. Provide versions of dependencies.

R7. Have README, SUPPORT, LICENSE, and CHANGELOG

file in top directory.

R8. Provide version comparison preprocessor macros.

xSDK member package: Must be an xSDK-compatible
package, and it uses or can be used by another package in the
xSDK, and the connecting interface is regularly tested for
regressions.

Version 1.0.0,

February 2023

22

Portability

Mandatory xSDK policies: must be satisfied

M1. Support portable installation through Spack
 (includes xSDK Spack variant guildelines)

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously called

packages.

M7. Come with an open-source license.

M8. Provide a runtime API to return the current version number of the software.

M9. Use a limited and well-defined symbol, macro, library, and include file name

space.

M10. Provide publicly available repository.

M11. Have no hardwired print or IO statements.

M12. Allow installing, building, and linking against an outside copy of external

software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

M14. Be buildable using 64-bit pointers. 32 bit is optional.

M15. All xSDK compatibility changes should be sustainable.

M16. Have a debug build option.

M17. Provide sufficient documentation to support use and further development.

Recommended xSDK policies: currently

encouraged, but not required
R1. Provide at least one validation test that can be invoked

through Spack.

R2. Possible to run test suite under valgrind in order to test for

memory corruption issues.

R3. Adopt and document consistent system for error

conditions/exceptions.

R4. Free all system resources it has acquired as soon as they

are no longer needed.

R5. Provide a mechanism to export ordered list of library

dependencies.

R6. Provide versions of dependencies.

R7. Have README, SUPPORT, LICENSE, and CHANGELOG

file in top directory.

R8. Provide version comparison preprocessor macros.

xSDK member package: Must be an xSDK-compatible
package, and it uses or can be used by another package in the
xSDK, and the connecting interface is regularly tested for
regressions.

Version 1.0.0,

February 2023

23
LLNL-PRES-854440

▪ Use of portable programming models that provide abstractions

▪ Use of abstraction to limit code that interacts with devices

▪ Use of fast kernel libraries designed for individual architectures

▪ Write own CUDA kernels, and use vendor provided tools to port kernels

▪ Develop new algorithms more suitable for GPUs
(most challenging, but possibly best results!)

Portability Strategies of xSDK Libraries

HIP

cuBLAS, cuSPARSE
rocBLAS, rocSPARSE

MKL

24

Interoperability

Mandatory xSDK policies: must be satisfied

M1. Support portable installation through Spack
 (includes xSDK Spack variant guildelines)

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously

called packages.

M7. Come with an open-source license.

M8. Provide a runtime API to return the current version number of the software.

M9. Use a limited and well-defined symbol, macro, library, and include file name

space.

M10. Provide publicly available repository.

M11. Have no hardwired print or IO statements.

M12. Allow installing, building, and linking against an outside copy of

external software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

M14. Be buildable using 64-bit pointers. 32 bit is optional.

M15. All xSDK compatibility changes should be sustainable.

M16. Have a debug build option.

M17. Provide sufficient documentation to support use and further development.

Recommended xSDK policies: currently

encouraged, but not required
R1. Provide at least one validation test that can be invoked

through Spack.

R2. Possible to run test suite under valgrind in order to test for

memory corruption issues.

R3. Adopt and document consistent system for error

conditions/exceptions.

R4. Free all system resources it has acquired as soon as

they are no longer needed.

R5. Provide a mechanism to export ordered list of library

dependencies.

R6. Provide versions of dependencies.

R7. Have README, SUPPORT, LICENSE, and CHANGELOG

file in top directory.

R8. Provide version comparison preprocessor macros.

xSDK member package: Must be an xSDK-compatible
package, and it uses or can be used by another package in
the xSDK, and the connecting interface is regularly tested
for regressions.

Version 1.0.0,

February 2023

25
LLNL-PRES-854440

Interoperability is challenging, particularly for deeper levels!

Levels of package
interoperability:
• Interoperability level 1

• Both packages can be used (side
by side) in an application

• Interoperability level 2

• The libraries can exchange data
(or control data) with each other

• Interoperability level 3

• Each library can call the other
library to perform unique
computations

Notation:

A B:

A can use B to provide

functionality on behalf of A

hypre
Preconditioner

deal-ii
Finite element

discretization

PETSc
Linear

Solver

SuperLU
Direct Solver

Multiphysics Application C

Application A Application B

SUNDIALS
dy/dt = f(y)

Trilinos
Linear

Solver

fA(y)

dfA (y)/dy

A

Ax=b

xSDK4ECP: Focus on inter-package functionality, denoted by

 Coordinating use of on-node resources

 Integrated execution (control inversion, adaptive execution strategies)

26
LLNL-PRES-854440

Many more interoperabilities between packages exist!

Interoperability exists

Interoperability exists and is enabled in xSDK Spack package

A
M

R
e
X

A
rb

o
rX

B
u

tte
rfly

P
A

C
K

d
e

a
l-ii

D
a
ta

T
ra

n
s
fe

rK
it

E
x
a

G
O

G
in

k
g

o

h
e

F
F

T
e

H
iO

p

h
y
p

re

lib
E

n
s
e

m
b

le

M
A

G
M

A

M
F

E
M

O
m

e
g

a
_

h

P
E

T
S

c

P
H

IS
T

P
L

A
S

M
A

p
re

C
IC

E

P
U

M
I

S
L

A
T

E

S
L

E
P

c

S
T

R
U

M
P

A
C

K

S
U

N
D

IA
L

S

S
u

p
e

rL
U

T
A

S
M

A
N

IA
N

T
rilin

o
s

AMReX

ArborX

ButterflyPACK

deal-ii

DataTransferKit

ExaGO

Ginkgo

heFFTe

HiOp

hypre

libEnsemble

MAGMA

MFEM

Omega_h

PETSc

PHIST

PLASMA

preCICE

PUMI

SLATE

SLEPc

STRUMPACK

SUNDIALS

SuperLU

TASMANIAN

Trilinos

27
LLNL-PRES-854440

• Suite of example codes has been made available in a github repository and

included in the xSDK documentation. :

https://github.com/xsdk-project/xsdk-examples

• The example codes are a demonstration

of interoperability between xSDK libraries

and provide training for xSDK library

users interested in using these

capabilities.

• Difficulty in building via `spack install xsdk-examples’, since new

interoperabilities generally not enabled in spack and/or xSDK yet. Provide

simple build via `cmake’.

• Test suite important piece of xSDK testing strategy plan

Multi-library example codes demonstrating interoperability

https://github.com/xsdk-project/xsdk-examples

28

Sustainability

Mandatory xSDK policies: must be satisfied

M1. Support portable installation through Spack
 (includes xSDK Spack variant guildelines)

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously called

packages.

M7. Come with an open-source license.

M8. Provide a runtime API to return the current version number of the software.

M9. Use a limited and well-defined symbol, macro, library, and include file name

space.

M10. Provide publicly available repository.

M11. Have no hardwired print or IO statements.

M12. Allow installing, building, and linking against an outside copy of external

software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

M14. Be buildable using 64-bit pointers. 32 bit is optional.

M15. All xSDK compatibility changes should be sustainable.

M16. Have a debug build option.

M17. Provide sufficient documentation to support use and further development.

Recommended xSDK policies: currently

encouraged, but not required
R1. Provide at least one validation test that can be invoked

through Spack.

R2. Possible to run test suite under valgrind in order to test for

memory corruption issues.

R3. Adopt and document consistent system for error

conditions/exceptions.

R4. Free all system resources it has acquired as soon as they

are no longer needed.

R5. Provide a mechanism to export ordered list of library

dependencies.

R6. Provide versions of dependencies.

R7. Have README, SUPPORT, LICENSE, and CHANGELOG

file in top directory.

R8. Provide version comparison preprocessor macros.

xSDK member package: Must be an xSDK-compatible
package, and it uses or can be used by another package in the
xSDK, and the connecting interface is regularly tested for
regressions.

Version 1.0.0,

February 2023

29

• Demonstrate the impact of community policies to simplify the combined use and portability of
independently developed software packages.

• Increase formality of xSDK release process.

• Expand xSDK to include additional key
ECP numerical libraries as well as
packages in the broader community.

• Pre-exascale environment testing:

– Summit, Crusher (OLCF)

– Polaris (ALCF)

– Perlmutter (NERSC)

• Includes 9 “rocm” and 14 “cuda” enabled libraries.

• Providing specific instructions for these
platforms on xSDK website
https://xsdk.info/installing-the-software/

Coordinated releases of complete xSDK with testing,
documentation, packaging and deployment

xSDK 0.8.0

https://xsdk.info/installing-the-software/

30

Processes for xSDK release and delivery

• 2-level release process

– xSDK

• Ensure and test compatibility of mostly independent package releases

– xSDK member packages

• Achieve compatibility with xSDK community policies prior to release

– https://github.com/xsdk-project/xsdk-policy-compatibility

• Have a Spack package

• Port to target platforms

• Provide user support

• Obtaining the latest release: https://xsdk.info/releases

• Draft xSDK package release process checklist:
– https://docs.google.com/document/d/16y2bL1RZg8wke0vY8c97ssvhRYNez34Q4QGg4LolEUk/edit?usp=sharing

xSDK delivery process

• Regular releases of software
and documentation, primarily
through member package
release processes

• Anytime open access to
production software from
GitHub, BitBucket and related
community platforms

https://github.com/xsdk-project/xsdk-policy-compatibility
https://xsdk.info/releases
https://docs.google.com/document/d/16y2bL1RZg8wke0vY8c97ssvhRYNez34Q4QGg4LolEUk/edit?usp=sharing

31

Technical Challenges

• Staying up to date while facing continual changes

– xSDK release schedule not aligned with individual xSDK library
and Spack release schedule

– Lower dependencies can cause additional problems

• Testing difficulties

– CI failures need to be investigated to understand what is broken and who should fix it

– Often there is more than one package causing the issue, but finding the issues is a sequential process,
i.e., the first issue needs to be fixed before the next one is discovered

– The responsible package developers need to be contacted

– Consistent oversight requires more people to respond to CI failures

• Designed test plan

– Improve xSDK-examples test suite and integrate it with the xSDK testing process

– Evaluate and extend current xSDK CI testing through the definition and use of hierarchical test layers,
addition of new platforms and increased oversight of test results

32

Hierarchical test layers

• Multi-layered testing

– Testing strategies of the individual xSDK libraries

– Testing of the interfaces between libraries

– Test subsets of various interoperable packages in combination

– Define further intermediate levels based on intricacy of library interoperability

– Testing of the whole xSDK (final level)

33

xSDK CI/Test setup

• Using Gitlab CI (pipeline) infrastructure at
https://gitlab.com/xsdk-project/spack-xsdk/-/pipelines

• Runs multiple tests per pipeline: spack install xsdk

– MacOS (ANL) with gfortran/clang compilers (xsdk)

– Linux (UTK) with GNU compilers (xsdk, xsdk-examples+cuda,
xsdk-examples)

– Linux (UTK) with Intel compilers (xsdk)

– Linux (ANL) with GNU compilers (xsdk-examples)

– Linux (ANL) with OneAPI(Intel) compilers (xsdk)

• Used as CI for 0.8.0 release work

• Setup for regression testing of 0.8.0 release in
spack (scheduled to run a pipeline every day –
on latest spack develop branch)

• Added testing of subsets of library
development versions to catch build
issues early for pre-release testing!

https://gitlab.com/xsdk-project/spack-xsdk/-/pipelines

34

Testing of xSDK subsets with development versions
• Build xSDK subset of development versions of packages - on

tSpack development and xSDK (future) branch, on the Linux
server at UTK with GNU compilers. It contains test jobs:

– PETSc-SLEPc-PFLOTRAN-hypre-SuperLU_dist

– heFFTe-MAGMA-TASMANIAN

We have added 8 new subset tests with development libraries to this
pipeline

– Libensemble-PETSc-TASMANIAN

– MFEM-SuperLU-STRUMPACK-PETSc-Slepc-PUMI-SUNDIALS-
hypre

– MFEM-SuperLU-STRUMPACK-PETSc-Slepc-PUMI-SUNDIALS-
hypre (CUDA)

– SUNDIALS-hypre-SuperLU-PETSc

– SUNDIALS-hypre-SuperLU-PETSc-MAGMA (CUDA)

– AMReX-SUNDIALS

– AMRex-SUNDIALS (CUDA)

– Trilinos-hypre-SuperLU

35

Updated Interoperability Matrix

We need to increase subsets to switch
more yellow boxes to magenta ones!

A
M

R
e
X

A
rb

o
rX

B
u
tte

rfly
P

A
C

K

d
e
a
l-ii

D
a
ta

T
ra

n
s
fe

rK
it

E
x
a
G

O

G
in

k
g
o

h
e
F

F
T

e

H
iO

p

h
yp

re

lib
E

n
s
e
m

b
le

M
A

G
M

A

M
F

E
M

O
m

e
g
a
_
h

P
E

T
S

c

P
H

IS
T

P
L
A

S
M

A

p
re

C
IC

E

P
U

M
I

S
L
A

T
E

S
L
E

P
c

S
T

R
U

M
P

A
C

K

S
U

N
D

IA
L
S

S
u
p
e
rL

U

T
A

S
M

A
N

IA
N

T
rilin

o
s

AMReX

ArborX

ButterflyPACK

deal-ii

DataTransferKit

ExaGO

Ginkgo

heFFTe

HiOp

hypre

libEnsemble

MAGMA

MFEM

Omega_h

PETSc

PHIST

PLASMA

preCICE

PUMI

SLATE

SLEPc

STRUMPACK

SUNDIALS

SuperLU

TASMANIAN

Trilinos

Interoperability exists

Interoperability exists and is enabled in xSDK Spack package

Interoperability planned

Interoperability exists and is enabled in Gitlab subsets job or xsdk-examples

36

• Update xSDK Community Policies

• xSDK 1.0.0 to be released in November 2023

• Increase interoperabilities and example codes

• Continue improving xSDK CI

Future Plans

General xSDK info: https://xsdk.info
• download

• installation,

• policies

https://github.com/xsdk-project/xsdk-community-policies

We encourage feedback
and contributions!

https://xsdk.info/
https://github.com/xsdk-project/xsdk-community-policies

37

xSDK-ECP Project Members

Ahmad Abdelfattah

Boyana Norris

Carol Woodward

Christian Glusa

Cody Balos

Damien Lebrun-Grandie

Daniel Arndt

Daniel Osei-Kuffuor

David Gardner

Erik Boman

Erin Carson

Gerald Ragghianti

Hartwig Anzt

Ian Mcinerney

Ichi Yamazaki

Ieva Dauzickaite

Jack Dongarra

Jamie Finney

Jennifer Loe

Jim Demmel

Jim Willenbring

Keita Teranishi

Kim Liegeois

Lois Curfman McInnes

Luc Berger-Vergiat

Mark Gates

Mike Heroux

Miroslav K. Stoyanov

Natalie Beams

Nick Higham

Osni Marques

Piotr Luszczek

Pratik Nayak

Richard Mills

Robert Falgout

Samuel Knight

Sarah Osborn

Satish Balay

Sherry Li

Siva Rajamanickam

Stan Tomov

Stephen Hudson

Stuart Slattery

Terry Cojean

Thomas Grützmacher

Tobias Ribizel

Tomas Gergelits

Tzanio Kolev

Ulrike Meier Yang

Veselin Dobrev

Victor Magri

Viktor Reshniak

Wenjun Ge

Yang Liu

And many more …

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither

the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any

warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Thank you!

This work was supported by the U.S. Department of Energy Office of Science,

Office of Advanced Scientific Computing Research (ASCR), and by the Exascale

Computing Project, a collaborative effort of the U.S. Department of Energy Office

of Science and the National Nuclear Security Administration.

	Slide 1: xSDK: an Ecosystem of Interoperable Independently Developed Math Libraries
	Slide 2: What is an ecosystem?
	Slide 3
	Slide 4: Outline
	Slide 5: History of xSDK
	Slide 6: Interoperable Design of Extreme-scale Application Software (IDEAS)
	Slide 7: Continuation of xSDK in Exascale Computing Project (ECP)
	Slide 8: Exascale Computing Project (ECP)’s holistic approach uses co-design and integration to achieve exascale computing
	Slide 9: DOE HPC Roadmap to Exascale Systems
	Slide 10
	Slide 11: xSDK History: Version 0.1.0: April 2016
	Slide 12: xSDK Version 0.8.0: November 2022
	Slide 13: xSDK Elements
	Slide 14: The xSDK is using Spack to deploy its software
	Slide 15: xSDK Libraries
	Slide 16: xSDK: https://xsdk.info Building the foundation of an extreme-scale scientific software ecosystem
	Slide 17: xSDK community policies https://github.com/xsdk-project/xsdk-community-policies
	Slide 18: Adding, Changing, Retiring Community Policies
	Slide 19: Compatibility with xSDK community policies
	Slide 20: What is required for an effective ecosystem?
	Slide 21: Software Quality
	Slide 22: Portability
	Slide 23
	Slide 24: Interoperability
	Slide 25: Interoperability is challenging, particularly for deeper levels!
	Slide 26: Many more interoperabilities between packages exist!
	Slide 27: Multi-library example codes demonstrating interoperability
	Slide 28: Sustainability
	Slide 29: Coordinated releases of complete xSDK with testing, documentation, packaging and deployment
	Slide 30: Processes for xSDK release and delivery
	Slide 31: Technical Challenges
	Slide 32: Hierarchical test layers
	Slide 33: xSDK CI/Test setup
	Slide 34: Testing of xSDK subsets with development versions
	Slide 35
	Slide 36
	Slide 37
	Slide 38

