We are going through very dark days as a country. On February 6, two earthquakes of 7.7 and 7.6 magnitudes shook southeast Turkey. Unfortunately, the death toll is over 35,400 and the number of people affected is over 13 million.

My thoughts are with people who have lost loved ones, and with children who have lost their parents. What I can do right now is to focus on how we can prepare a better future for these people with the help of HPC.

Supercomputing Software for

Moore and Beyond

Assoc. Prof. Didem Unat Parallel and Multicore Computing Laboratory Koç University, Turkey

SIAG/SC • 15 Feb 2023

Post Moore

Lecture by Turing Award recipient Jack Dongarra

PAR • CORE • LAB

Moore's law is the observation that the number of transistors in an integrated circuit doubles about every 2 years.

[1]: Marc Horowitz, Computing's Energy Problem (and what we can do about it), ISSC 2014, plenary [2]: Moore: Landauer Limit Demonstrated, IEEE Spectrum 2012

- The speed of light, the atomic nature of materials and growing costs mark the end of Moore's Law.
- Cost of manufacturing [3]
 - \$170M for a 10 nm chip, \$300M for a 7 nm chip, \$500M for a 5 nm chip
 - For specialized chips, even higher

Observation 1: Supercomputing on a desktop

Observation 2: HPC software eventually will make it to the cell phones and laptops

Trend #1 Multicore Architectures

- Core count doesn't increase as much as we expected
- Teaching multicore programming is crucial

Trend #2 Heterogeneous Computing

PAR • CORE • LAB

Trend #2 Heterogeneous Computing

- Several solutions how to program an accelerator
- Multi-GPU support is still not fully there
- Alternative but not the only solution

Trend #3 Emergence and Dominance of AI

2016 onward, Parallel Training is The New Norm for DNN Training

Trend #4 Data movement cost

Data movement expensive!

	Top 500 System and Their HPCG Performance	Country	Cores	Rmax (PFlop/s)	TOP500 Rank	HPCG (PFlop/s)	% of Peak
-	Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu, RIKEN	Japan	7,630,848	442.01	2	16	3.00%
2	Prontier - HPE Cray EX235a, AMD EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE, DOE/SC/Oak Ridge	US	8,730,112	1,102.00	1	14.1	0.80%
3	LUMI - HPE Cray EX235a, AMD EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11 EuroHPC/CSC	Finland	2,220,288	309.1	3	3.41	0.80%
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM, DOE/SC/Oak Ridge	US	2,414,592	148.6	5	2.93	1.50%
Ę	5 Leonardo - Bull Sequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos, EuroHPC/CINECA	Italy	1,463,616	174.7	4	2.57	1.00%
6	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, DOE/SC/LBNL/NERSC	US	761,856	70.87	8	1.91	2.00%
7	V Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox, DOE/NNSA/LLNL	US	1,572,480	94.64	6	1.8	1.40%
8	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, NVIDIA Corporation	US	555,520	63.46	9	1.62	2.00%
ę	 JUWELS Booster Module - Bull Sequana XH2000, AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite. Atos Forschungszentrum Juelich (FZJ) 	Germany	449,280	44.12	12	1.28	1.80%
1	0 Dammam-7 - Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz, NVIDIA Tesla V100 SXM2, InfiniBand HDR 100, HPE Saudi Aramco	Saudi Arabia	672,520	22.4	20	0.88	1.60%
	KOÇ ÜNİVERSİTESİ						18

	Top 500 System and Their HPCG Performance	Country	Cores	Rmax (PFlop/s)	TOP500 Rank	HPCG (PFlop/s)	% of Peak
1	Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu, RIKEN	Japan	7,630,848	442.01	2	16	3.00%
2	Frontier - HPE Cray EX235a, AMD EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE, DOE/SC/Oak Ridge	US	8,730,112	1,102.00	1	14.1	0.80%
3	LUMI - HPE Cray EX235a, AMD EPYC 64C 2GHz, AMD Instinct MI250X, Sling	Finland	2,220,288	309.1	3	3.41	0.80%
4	• Clearly showing the machine imba	lance		dontin	ai70		1.50%
5	 Sparse computational kernels are formational kernels are formatio	network b	bandwid	th and	latend	cy	1.00%
6	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHZ, NVIDIA A100 SXM4 40 GB, Slingshot-10, DOE/SC/LBNL/NERSC	US	761,856	70.87	8	1.91	2.00%
7	Sierra - IBM Power System AC022, IBM POWER0 22C 2 1CH2, NV/IDIA Volta GV100, Dual-rail Me DOE/NNSA/LLNL When will CG be able to sustain	Exaflop pe	rforman	•4.64 ce?	6	1.8	1.40%
8	Selene - NVIDIA DG Requires 100x performant Mellanox HDR Infinibano, NVIDIA Corporation	ce improve	ment	46	9	1.62	2.00%
9	JUWELS Booster Module - Bull Sequana XH2000, AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite Atos Forschungszentrum Juelich (FZJ)	Germany	449,280	44.12	12	1.28	1.80%
10	Dammam-7 - Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz, NVIDIA Tesla V100 SXM2, InfiniBand HDR 100, HPE Saudi Aramco	Saudi Arabia	672,520	22.4	20	0.88	1.60%

- Data movement still dominates
- Hiding communication costs is becoming increasingly difficult but necessary
- At high levels of parallelism, synchronization becomes increasingly expensive.
- Stop counting FLOPS, count data movement

PADAL Workshop Series

- To discuss emerging approaches in data locality we organized a workshop at
 - Lugano, 2014
 - Berkeley, 2015
 - Kobe, 2016
 - Chicago, 2017
 - Bordeaux, 2019
- Major movement among code teams to implement data locality abstractions
 - because they are critically important for future codes.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Trends in Data Locality Abstractions for HPC Systems

Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf, Mark Abraham, Mauro Bianco, Bradford L. Chamberlain, Romain Cledat, H. Carter Edwards, Hal Finkel, Karl Fuerlinger, Frank Hannig, Emmanuel Jeannot, Amir Kamil, Jeff Keasler, Paul H J Kelly, Vitus Leung, Hatem Ltaief, Naoya Maruyama, Chris J. Newburn, and Miquel Pericás

Abstract— The cost of data movement has always been an important concern in high performance computing (HPC) systems. It has now become the dominant factor in terms of both energy consumption and performance. Support for expression of data locality has been explored in the past, but hose efforts have had only modest success in being adopted in HPC applications for various reasons. However, with the increasing complexity of the memory hierarchy and higher parallelism in emerging HPC systems, locality management has acquired a new urgency. Developers can no longer limit themselves to low-level solutions and ignore the potential for productivity and performance portability obtained by using locality abstractions. Fortunately, the trend emerging in recent literature on the topic alleviates many of the concerns that got in the way of their adoption by application developers. Data locality abstractions are available in the forms of libraries, data structures, languages and runtime systems; a common theme is increasing productivity without sacrificing performance. This paper examines these trends and identifies commonalities that can combine various locality concepts to develop a comprehensive approach to expressing and managing data locality on future large-scale high-performance computing systems.

Index Terms—Data locality, programming abstractions, high-performance computing, data layout, locality-aware runtimes

Sparse Computation

Alternative Model of Execution

Data Locality Tools

Didem Unat

Project Coordinator, Koç University

This project has received funding from the European High-Performance Computing Joint Undertaking under grant agreement No. 956213.

- Efficient sparse computing depends on statistical features that describe the sparsity pattern
- More than 100 extracted features integrated in one large and practical set of sparse features
- Used as inputs for automated <u>sparse format and kernel selection ML-based approaches</u>
- Low-overhead extraction methods for integration in the SparseBase framework

Feature extraction of sparse computation

		E. Ares(2021)8018738 - 31/12/2021	GRAPHS		SPARSE TENSORS		
Core Se	E I I						
Denverable 140.	D1.1				INMAXYATI		
Deliverable Title: Deliverable Publish Date: Project Title:	Core Set of Sparse Computation Features 31 December 2021 SPARCITY: An Optimization and Co-desig Sparse Computation	gn Framework for	Table 6 Sparse tens	sor features. *Due to the complex formula, the form	mula is omitted but described in the t	text.	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project No:	Core Set of Sparse Computation Features 31 December 2021 SPARCITY: An Optimization and Co-desig Sparse Computation H2020-JTI-EuroHPC-2019-1 066012	gn Framework for	Table 6 Sparse tens Feature	sor features. *Due to the complex formula, the form	mula is omitted but described in the t Formula	text.	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project No: Project Duration:	Core Set of Sparse Computation Features 31 December 2021 SPARCITY: An Optimization and Co-desig Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months	gn Framework for	Table 6 Sparse tens Feature size m	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m)	mula is omitted but described in the t Formula	text.	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project No: Project Duration: Project Start Date: Contact:	Core Set of Sparse Computation Features 31 December 2021 SPARCTYY: An Optimization and Co-desig Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months 1 April 2021 sparcity-project-group@ku.edu.tr	gn Framework for	Table 6 Sparse tens Feature size_m fiberCnt	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m) Number of fibers	mula is omitted but described in the t Formula I_{m} $ \mathcal{F} = \sum \mathcal{F}_{m} $	text.	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project No: Project Duration: Project Start Date: Contact:	Core Set of Sparse Computation Features 31 December 2021 SPARCTY: An Optimization and Co-desig Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months 1 April 2021 sparcity-project-group@ku.edu.tr	gn Framework for	Table 6 Sparse tens Feature	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m) Number of fibers Number of slices	mula is omitted but described in the t Formula I_{m} $ \mathcal{F} = \sum \mathcal{F}_{m}$ $ \mathcal{S} = \sum \mathcal{S}_{m}$	text.	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project No: Project Duration: Project Start Date: Contact:	Core Set of Sparse Computation Features 31 December 2021 SPARCITY: An Optimization and Co-desig Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months 1 April 2021 sparcity-project-group@ku.edu.tr	gn Framework for	Table 6 Sparse tens Feature	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m) Number of fibers Number of slices The ratio of fibers	mula is omitted but described in the t Formula I_{m} $ \mathcal{F} = \sum \mathcal{F}_{m}$ $ \mathcal{S} = \sum \mathcal{S}_{k,\ell} $ $ \mathcal{F} /\min(\mathcal{F})$	1 2 2	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project No: Project Duration: Project Duration: Project Start Date: Contact:	Core Set of Sparse Computation Features 31 December 2021 SPARCITY: An Optimization and Co-desi Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months 1 April 2021 sparcity-project-group@ku.edu.tr	gn Framework for	Table 6 Sparse tens Feature	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m) Number of fibers Number of fibers The ratio of fibers The ratio of fibers	mula is omitted but described in the t Formula I_{m} $ \mathcal{F} = \sum \mathcal{F}_{m} $ $ \mathcal{S} = \sum \mathcal{S}_{k,\ell} $ $ \mathcal{F} /\min(\mathcal{F}_{m})$	text.	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project No: Project Duration: Project Start Date: Contact:	Core Set of Sparse Computation Features 31 December 2021 SPARCITY: An Optimization and Co-desi Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months 1 April 2021 sparcity-project-group@ku.edu.tr	gn Framework for	Table 6 Sparse tens Feature	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m) Number of fibers Number of slices The ratio of fibers The ratio of slices Number of propagator	mula is omitted but described in the t Formula I_{m} $ \mathcal{F} = \sum \mathcal{F}_{m}$ $ \mathcal{S} = \sum \mathcal{S}_{k,\ell} $ $ \mathcal{F} /\min(\mathcal{F}_{m}) \leq \min(\mathcal{S}_{k,\ell}) $	text. ι ε ι) ε)	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project No: Project No: Project Start Date: Contact: List of partners:	Core Set of Sparse Computation Features 31 December 2021 SPARCITY: An Optimization and Co-desi Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months 1 April 2021 sparcity-project-group@ku.edu.tr	gn Framework for	Table 6 Sparse tens Feature	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m) Number of fibers Number of slices The ratio of fibers The ratio of slices Number of nonzeros	mula is omitted but described in the t Formula I_{m} $ \mathcal{F} = \sum \mathcal{F}_{m}$ $ \mathcal{S} = \sum \mathcal{S}_{k,\ell}$ $ \mathcal{F} /\min(\mathcal{F}_{m}$ $ S /\min(\mathcal{S}_{k,\ell}$ $\operatorname{nzz}(\mathfrak{X})$ $(\mathfrak{M}) \in \mathbb{R}$	ι ε ι) ε)	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project No: Project Duration: Project Start Date: Contact: List of partners: Participant no. Particip	Core Set of Sparse Computation Features 31 December 2021 SPARCTTY: An Optimization and Co-desig Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months 1 April 2021 sparcity-project-group@ku.edu.tr pant organisation name	gn Framework for	Table 6 Sparse tens Feature	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m) Number of fibers Number of slices The ratio of fibers The ratio of slices Number of nonzeros Density of nnz in the tensor	mula is omitted but described in the t Formula I_{m} $ \mathcal{F} = \sum \mathcal{F}_{m}$ $ \mathcal{S} = \sum \mathcal{S}_{k,\ell}$ $ \mathcal{F} /\min(\mathcal{F}_{m}$ $ S /\min(\mathcal{S}_{k,\ell}$ $nzz(\mathcal{X})$ $nzz(\mathcal{X})/\prod I$	text. ا el l) el) Im	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project No: Project Duration: Project Start Date: Contact: List of partners: Participant no. Particip 1 (Coordinator) Kog Umi	Core Set of Sparse Computation Features 31 December 2021 SPARCTY: An Optimization and Co-desig Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months 1 April 2021 sparcity-project-group@ku.edu.tr pant organisation name iversity	gn Framework for Short name Country KU Turkey SU Turkey	Table 6 Sparse tens Feature	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m) Number of fibers Number of slices The ratio of fibers The ratio of slices Number of nonzeros Density of nnz in the tensor Average nnz per slice	mula is omitted but described in the t Formula I_{m} $ \mathcal{F} = \sum \mathcal{F}_{m}$ $ \mathcal{S} = \sum \mathcal{S}_{k,\ell}$ $ \mathcal{F} /\min(\mathcal{F}_{m}$ $ S /\min(\mathcal{S}_{k,\ell})$ $nzz(\mathcal{X})$ $nzz(\mathcal{X})/\prod I$ $\sum nnz(\mathcal{S}_{k,\ell})$	ι ε ι) ε) Ιm / S	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project Duration: Project Duration: Project Start Date: Contact: List of partners: Participant no. Particip. 1 (Coordinator) Koç Uni 2 Sabanc 3 Simula 1	Core Set of Sparse Computation Features 31 December 2021 SPARCTY: An Optimization and Co-desig Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months 1 April 2021 sparcity-project-group@ku.edu.tr pant organisation name iiversity University Research Laboratory AS	gn Framework for Short name Country KU Turkey SU Turkey Simula Norway	Table 6 Sparse tens Feature	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m) Number of fibers Number of slices The ratio of fibers The ratio of fibers The ratio of slices Number of nonzeros Density of nnz in the tensor Average nnz per slice Maximum nnz per slice	mula is omitted but described in the t Formula I_{m} $ \mathcal{F} = \sum \mathcal{F}_{m}$ $ \mathcal{S} = \sum \mathcal{S}_{k,\ell}$ $ \mathcal{F} /\min(\mathcal{F}_{m}$ $ S /\min(\mathcal{S}_{k,\ell})$ $\max(\operatorname{nnz}(\mathcal{S}_{k},\ell))$	ι e ι) e) Im / S .e))	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project No: Project Duration: Project Duration: Project Start Date: Contact: List of partners: Participant no. Particip 1 (Coordinator) Koç Uni 2 Sabancı 3 Simula I 4 Instituto	Core Set of Sparse Computation Features 31 December 2021 SPARCTY: An Optimization and Co-desig Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months 1 April 2021 sparcity-project-group@ku.edu.tr pant organisation name iiversity University University Research Laboratory AS o de Engenharia de Sistemas e Computadores,	gn Framework for Short name Country KU Turkey SU Turkey Simula Norway INESC-ID Portugal	Table 6 Sparse tens Feature	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m) Number of fibers Number of slices The ratio of fibers The ratio of fibers The ratio of slices Number of nonzeros Density of nnz in the tensor Average nnz per slice Maximum nnz per slice Minimum nnz per slice	mula is omitted but described in the t Formula I_{m} $ \mathcal{F} = \sum_{k,\ell} \mathcal{F}_{m} $ $ \mathcal{S} = \sum_{k,\ell} \mathcal{S}_{k,\ell} $ $ \mathcal{F} /\min(\mathcal{S}_{k,\ell})$ $nzz(\mathcal{X})$ $nzz(\mathcal{X})/\prod_{k,\ell} \mathcal{S}_{k,\ell} $ $max(nnz(\mathcal{S}_{k,\ell}))$ $max(nnz(\mathcal{S}_{k,\ell}))$	text.	
Deliverable Title: Deliverable Publish Date: Project Title: Call ID: Project Duration: Project Duration: Project Start Date: Contact: List of partners: Participant no. Particip 1 (Coordinator) Koç Uni 2 Sabancı 3 Simula 1 4 Instituto 1 Nvestig 2 - Uudwin	Core Set of Sparse Computation Features 31 December 2021 SPARCITY: An Optimization and Co-desi Sparse Computation H2020-JTI-EuroHPC-2019-1 956213 36 months 1 April 2021 sparcity-project-group@ku.edu.tr pant organisation name iversity University University Research Laboratory AS o de Engenharia de Sistemas e Computadores, gação e Desenvolvimento em Lisboa	gn Framework for Short name Country KU Turkey SU Turkey Simula Norway INESC-ID Portugal UMU Cormanu	Table 6 Sparse tens Feature	sor features. *Due to the complex formula, the form Description Tensor mode size (in mode m) Number of fibers Number of slices The ratio of fibers The ratio of fibers The ratio of slices Number of nonzeros Density of nnz in the tensor Average nnz per slice Maximum nnz per slice Minimum nnz per slice Average nnz difference of adjacent slices	$\label{eq:rescaled} \begin{array}{c} \mbox{mula is omitted but described in the t} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $	text.	

PAR

27

SparseBase: Pre-processing Base for Sparse Computation

https://github.com/sparcityeu/sparsebase

LAB

SparseBase: Pre-processing Base for Sparse Computation

https://github.com/sparcityeu/sparsebase

SparseBase: Pre-processing Base for Sparse Computation

https://github.com/sparcityeu/sparsebase

CPU-free Execution

European Research Council Established by the European Commission

Traditional GPU Execution Model

CPUs

Application Code

Traditional GPU Execution Model

PAR • Core • LAB

Traditional GPU Execution Model

PAR • Core • LAB

- Launches compute kernels
- Issues communication calls
- Overlaps communication with compute
- Acts as synchronizer both within and across devices

CPU-free execution model

- Persistent kernels
 - Long running kernels
 - Time loop on the device
- TB specialization
 - Spare some TBs to comm
 - Rest for computation
- GPU-initiated data movement
 - Peer to peer communication
 - Issue calls within the device
- Device-side synchronization
 - Device -wide barriers
 - Across device sync

Data Locality Tools

•

ComDetective

"ComDetective: A Lightweight Communication Detection Tool for Threads", IEEE/ACM Supercomputing Conference, Best Student Paper and Best Paper finalist for SC19.

ReuseTracker

"ReuseTracker: Fast Yet Accurate Multicore Reuse Distance Analyzer", ACM TACO and HiPEAC Conference, June 2022

AMD vs Intel

"Precise Event Sampling on AMD vs Intel: Quantitative and Qualitative Comparison", IEEE TPDS, 2023. Under minor revision.

ComDetective

- In addition to communication matrix, ComDetective also produces true sharing and false sharing matrices
- It took only **1.28x** performance and **1.11x** memory footprint overhead to generate these matrices with ComDetective

ReuseTracker

PAR • CORE • LAB

Open source

Code line attribution Attributes uses and reuses to source code lines

- ComDetective
 - Guiding thread-to-core binding
 - Guiding code refactoring to remove false sharing
- ReuseTracker
 - Loop transformation that should be implemented to improve locality in local data caches
 - Decide whether to activate hardware-level optimizations such as adjacent cache line prefetch to reduce high latency memory accesses

https://github.com/ParCoreLab/ParCoreTools

- Parallel systems are here to stay
 - Homogeneous and heterogeneous systems
- Reducing data movement and synchronization overheads are crucial
- Post-Moore's Era
 - Requires more interaction with vendors and AI community to solve the data movement problems
 - HPC can help Al, Al can help HPC
- Plenty of research opportunities
 - We are hiring !!!

Supercomputers mean super power.

By developing software for supercomputers, one can control that super power.

For disaster management and large-scale earthquake simulation

With the help of HPC

- Ground motion prediction
- Spectral acceleration measurements with high resolution
- Detailed seismic hazard maps
- Al guided building design

Infrastructure support, simulation/modeling, parallelization, domain expertise

Earth's crust has gone a deformation of 3-4 meters along a line of approximately 400 kms (250 miles)

https://www.nvtimes.com/interactive/2023/02/10/world/middleeast/kahramanmaras-turkey-earthquake-damage.html?smid=tw-nvtimesworld&smtyp=cur

Thank you!

https://parcorelab.ku.edu.tr/

dunat@ku.edu.tr

