We are going through very dark days as a country. On
February 6, two earthquakes of 7.7 and 7.6 magnitudes shook
southeast Turkey. Unfortunately, the death toll is over 35,400

and the number of people affected is over 13 million.

My thoughts are with people who have lost loved ones, and
with children who have lost their parents. What | can do right
now is to focus on how we can prepare a better future for
these people with the help of HPC.
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Moore’s Law P aRe o]

Alt\may
UL

130nm 90nm 65nm 45nm 32nm  22nm 14nm  10nm 7nm 5nm

Moore's law is the observation that the number of transistors in an integrated circuit
doubles about every 2 years.

[1]: Marc Horowitz, Computing'’s Energy Problem (and what we can do about it), ISSC 2014, plenary

é‘% [2]: Moore: Landauer Limit Demonstrated, IEEE Spectrum 2012 5
S UNIVERSITES]



Moore’s Law P aRe o]
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90Nnm 65nm 45nm 32nm  22nm14nm  10nm 7nm 5m

e The speed of light, the atomic nature of materials and growing costs mark the
end of Moore’s Law.

e Cost of manufacturing [3]
e $170M for a 10 nm chip, $300M for a 7 nm chip, $500M for a 5 nm chip
e For specialized chips, even higher

S gOC ://builf ’
%§ KOG e [3] https://builtin.com/hardware/moores-law 6
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Observation 1: Supercomputing on a desktop
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Thanks to Moore’s Law P aRe o]
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101 101
5 8

1985 1998 2008 2022

Observation 2: HPC software eventually will make it to the
g cell phones and laptops
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Trend #1 Multicore Architectures PAR &
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core C—1 core | core e Teaching multicore
FT FT programming is crucial
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Network-on-Chip ranked #1
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Several solutions how to program an accelerator
Multi-GPU support is still not fully there
Alternative but not the only solution
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Trend #3 Emergence and Dominance of Al PAR o
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2016 onward, Parallel Training is The New Norm for DNN Training

A, KOC L.
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Trend #4 Data movement cost CORE o
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Computation cheap!

[ 100 pj M

[1]: Marc Horowitz, Computing's Energy Problem (and what we can do about it), ISSC 2014, plenary

Data movement expensive!
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Imbalance Machines PAR o—
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Machine balance
(floating point operations per read)

e Compute Speed/Memory Bandwidth | 7 T
Ratio: FLOPS/WORDS Lo :
e Today's systems are capable of doing / " i )
100 flops per word-transferred i ’ P & Ptﬁ" I
e However applications do not perforr °>°°\° 486053.”-4%’4;6 pEcs’
that many operations N e ’C9°:'“:;f""
=> causing machine imbalance = o

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
year

fomov, Translational

Leading to an increasing gap between data movement ustonai scence.
speeds and computation speeds.

s UNIVERSITESI 17



Top 500 System and Their HPCG Performance

1 Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu, RIKEN

2  Frontier - HPE Cray EX235a, AMD EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE, DOE/SC/Oak Ridge

3  LUMI - HPE Cray EX235a, AMD EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11 EuroHPC/CSC

4 Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta
GV100, Dual-rail Mellanox EDR Infiniband, IBM, DOE/SC/Oak Ridge

5 Leonardo - Bull Sequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA
A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos,
EuroHPC/CINECA

Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta
GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox,
DOE/NNSA/LLNL

8 Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100,
Mellanox HDR Infiniband, NVIDIA Corporation

Country

Japan

us

Finland

us

Italy

us

Cores

7,630,848

8,730,112

2,220,288

2,414,592

1,463,616

1,572,480

555,520

Rmax TOP500 HPCG
(PFlop/s) Rank (PFlop/s)

442.01 2 16
1,102.00 1 141
309.1 3 341
148.6 5 293
174.7 4 257

94.64 1.8

63.46 9 1.62

% of Peak

3.00%!
0.80%
0.80%
1.50%

1.00%

1.40%

2.00%

10 Dammam-7 - Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz, NVIDIA Tesla V100
SXM2, InfiniBand HDR 100, HPE Saudi Aramco

A xoC

>

UNIVERSITESI

Saudi Arabia

672,520

224 20 0.88

1.60%

18



https://www.top500.org/system/179894
https://www.top500.org/system/179894
https://www.top500.org/site/47871

Top 500 System and Their HPCG Performance Country Cores Rmax TOP500 HPCG (0 of Peak
(PFlop/s) Rank (PFlop/s)

1 Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu, RIKEN Japan 7,630,848 442.01 2 16 3 00%

2  Frontier - HPE Cray EX235a, AMD EPYC 64C 2GHz, AMD Instinct MI250X, us 8,730,112 1,102.00 1 141 0.80%
Slingshot-11, HPE, DOE/SC/Oak Ridge

3  LUMI - HPE Cray EX235a, AMD EPYC 64C 2GHz, AMD Instinct MI250X, Finland 2,220,288 309.1 3 3.41 0 80%
Slin?" \

4  Sun . . . 0
o ® Clearly showing the machine imbalance 1.50%

s L. ©® Sparsecomputational kernelsare harder to scale and optimize T
a¢ e They are bounded by the memory/network bandwidth and latency S

Eur

7 Sierra - IBM Power S .64 6 1.8 1 40%

GV100, Dual-rail Me 0 R ?
DOEINNSAILLAL When will CG be able to sustain Exaflop performance?

8 Selens - NVIDIADG Requires 100x performance improvement

Mellanox HDR |nfiniba||u, NVTDTA CUTPOTatiorn

6 9 1.62 2_00%

10 Dammam-7 - Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz, NVIDIA Tesla V100  Saudi Arabia 672,520 22.4 20 0.88 1 60%
SXM2, InfiniBand HDR 100, HPE Saudi Aramco

A xoC
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https://www.top500.org/system/179894
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Dynamic Models: Sparsification PAR &
LAB
70 mmm Model sparsification for inference i
W Model sparsification for training |
60 B Ephemeral sparsification
50 mmm Hardware acceleration for sparsity I
mmm Software acceleration for sparsity I
40 Transformer
30 ResNet ¥ .
.
% il
20 Start of second Al winter N ! -— .
LSTM
10 GPUs for DL l e
B _=ms ! il
Q0 m==m By - —— == 3
VDO~ ANNMTOONMNOVDDOTTANNMTULOMNODDOTANMTLWLOMNOWOO O
VOO OO OO OO0 OO0 ™ v«™v ™ v™v™v—v—QN
OO0 ODODDOO0OO0ODOOODO0O0OODOOODO O
TrEr T T TETE T rE T AN AN ANNANANANNANNNNNNNANNNNNN

ity i ing, T. , https://arxiv.org/abs/ .
§‘L?_‘ KOC . ' Sparsity in Deep Learning, T. Hoefler, https://arxiv.org/abs/2102.00554
> UNIVERSITESI 20
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Research Focus CORE o]

LAB

e Data movement still dominates

e Hiding communication costs is becoming increasingly difficult but
necessary

e At high levels of parallelism, synchronization becomes increasingly
expensive.

e Stop counting FLOPS, count data movement

Sxoe
S UNIVERSITESI 21



PADAL Workshop Series

e Todiscuss emerging approaches in data
locality we organized a workshop at

- Lugano, 2014
- Berkeley, 2015

- Kobe, 2016
- Chicago, 2017
- Bordeaux, 2019

¢ Major movement among code teams to
implement data locality abstractions

- because they are critically important
for future codes.

Sxoe
> UNIVERSITESI
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PROGRAMMING
ABSTRACTIONS
FOR
DATA LOCALITY
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Trends in Data Locality Abstractions for HPC
Systems

Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf,
Mark Abraham, Mauro Bianco, Bradford L. Chamberlain, Romain Cledat, H. Carter Edwards, Hal Finkel,
Karl Fuerlinger, Frank Hannig, Emmanuel Jeannot, Amir Kamil, Jeff Keasler, Paul H J Kelly, Vitus Leung,
Hatem Ltaief, Naoya Maruyama, Chris J. Newburn, and Miquel Pericas

Abstract— The cost of data movement has always been an important concern in high performance computing (HPC) systems. It has
now become the dominant factor in terms of both energy consumption and performance. Support for expression of data locality has
been explored in the past, but those efforts have had only modest success in being adopted in HPC applications for various reasons.
However, with the increasing complexity of the memory hierarchy and higher parallelism in emerging HPC systems, locality
management has acquired a new urgency. Developers can no longer limit themselves to low-level solutions and ignore the potential for
productivity and performance portability obtained by using locality abstractions. Fortunately, the trend emerging in recent literature on
the topic alleviates many of the concerns that got in the way of their adoption by application developers. Data locality abstractions are
available in the forms of libraries, data structures, languages and runtime systems; a common theme is increasing productivity without
sacrificing performance. This paper examines these trends and identifies commonalities that can combine various locality concepts to
develop a comprehensive approach to expressing and managing data locality on future large-scale high-performance computing
systems.

Index Terms—Data locality, programming abstractions, high-performance computing, data layout, locality-aware runtimes
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Sparse Computation

Alternative Model of Execution

Data Locality Tools
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Feature extraction of sparse computation PAR —
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SPARSE MATRICES GRAPHS SPARSE TENSORS

e Efficient sparse computing depends on statistical features that describe the sparsity pattern
e Morethan 100 extracted features integrated in one large and practical set of sparse features

e Used as inputs for automated sparse format and kernel selection ML-based approaches

e Low-overhead extraction methods for integration in the SparseBase framework

s UNIVERSITESI 25




Feature extraction of sparse computation PAR &

LAB

B Ref. Ares(2021)8018738 - 31/12/2021

GRAPHS SPARSE TENSORS

(S PIAIRIENE
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Core Set of Sparse Computation Features

Deliverable No: D11
Deliverable Title: Core Set of Sparse Computation Features
Deliverable Publish Date: 31 December 2021 i i p 2
Table 6 Sparse tensor features. *Due to the complex formula, the formula is omitted but described in the text.
Project Title: SPARCITY: An Optimization and Co-design Framework for
Sparse Computation
Call ID: H2020-JTI-EuroHPC-2019-1 Feature Description Formula
Project No: 956213
Project Duration: 36 months . . .
Project Start Date: 1 April 2021 size_m Tensor mode size (in mode m) Im
Contact: sparcity-project-group@ku.edu.tr fiberCnt Number of fibers | g.'l — Z | g.'m|
sliceCnt Number of slices 18| = > I8k el
fiberRatio The ratio of fibers |F/min(|Fml)
sliceRatio The ratio of slices |S|/min(|Sk,el)
List of partners: nnz Number of nonzeros nzz(X)
Participant no. | Participant isation name Short name | Country denSItY Den51ty Of nnz n the tensor nzz(f)C)/ H Im
2 (Coordinator) | Kos University = v Turkey avgNnzPerSlice Average nnz per slice > nnz(8y¢)/I8|
2 abanci Universif urkey " 2 "
3 Simula Research Laboratory AS Simula Norway maxNnzPerSlice Maximum nnz per slice max(nnz(8y,¢))
4 inshh{to de Engenharia d‘e Sistemas e‘Computadores, INESC-ID | Portugal minNnzPerSlice Minimum nnz per slice min( nnz ( Sk ¢ ) )
nvestigagdo e Desenvolvimento em Lisboa N N 2 ) A %
5 Ludwig-Maximilians-Universitat Miinchen MU Germany adjNnzPerSlice Average nnz difference of adjacent slices %
6 Graphcore AS Graph N . - "
e repnoore | Tomway devNnzPerSlice The deviation of nnz per slice *
26
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Reordering for better caching PAR &
LAB
Reverse Cuthill-McKee (RCM): heuristic bandwidth minimization for SpMV
torso1 Zd_jac6 HV15R poisson3Db
N = =\ =

NN : \\\ E . \ '
et N N - N
> NG s b " = e \
«© NN A
S \ N NE \
g N N ""‘ . .

\§ \\\ "‘=:\

< \
ERRERNS \
= \\
14 N
N\
\o
speedup 0.14x 1.00x 3.14x
2 SNIVERSITESI Slide credit: Johannes Langguth (Simula) 27




Reordering Algorithm Selection
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Sparse Matri
Collection

)

Matrix

[ Generator

r_>[ Reordering #1 ]ﬁ
’ ’| Reordering #2]

)
)

Feature ]
Extractor J

No Reordering

in: reordered
tensors

out: execution times
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In collaboration with SparCity partners
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SparseBase: Pre-processing Base for Sparse Computation PAR &—
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https://github.com/sparcityeu/sparsebase LAB
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https://github.com/sparcityeu/sparsebase

SparseBase: Pre-processing Base for Sparse Computation PAR &—

. . CORE 0+
https://github.com/sparcityeu/sparsebase LAB
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https://github.com/sparcityeu/sparsebase

SparseBase: Pre-processing Base for Sparse Computation PAR &—

. . CORE 0+
https://github.com/sparcityeu/sparsebase LAB
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https://github.com/sparcityeu/sparsebase

CPU-free Execution

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 949587).



Traditional GPU Execution Model PAR &
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CPUs
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Traditional GPU Execution Model PAR &
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Application Code
CPUs
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Traditional GPU Execution Model PAR &

LAB

Application Code

CPUs

e Launches compute kernels

\ =

e Performs computation

e Issues communication calls
e Overlaps communication

with compute

I

e Acts as synchronizer both

\_—,
within and across devices —
\ .

S xoe
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CPU-free execution model

PAR —
CORE o+
LAB

e Persistent kernels
o Longrunning kernels
o Timeloop onthe device
e TB specialization
o Spare some TBstocomm
o Rest for computation
e GPU-initiated data movement
o Peer to peer communication
o Issue calls within the device
e Device-side synchronization
o Device -wide barriers
o Across device sync

A xoC
s UNIVERSITESI
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Device-wide Sync
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. AIlTBs

Comm TBs
133| compTBs

GPU-initiated
inter-GPU
communication &
synchronization
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Data Locality Tools



Data-Centric Profiling Tools PAR &

LAB

*  “CombDetective: A Lightweight Communication Detection Tool for
Threads", |IEEE/ACM Supercomputing Conference, Best Student
Paper and Best Paper finalist for SC19.

[ ComDetective ]

 “ReuseTracker: Fast Yet Accurate Multicore Reuse Distance
Analyzer”, ACM TACO and HiPEAC Conference, June 2022

[ AMD vs Intel e “Precise Event Sampling on AMD vs Intel: Quantitative and
Qualitative Comparison”, IEEE TPDS, 2023. Under minor revision.

Sxoe
S UNIVERSITESI 38




PAR o—

ComDetective CORE o

LAB

oy e

5 10 15 20 25

MPI communication matrix communication matrix true sharing matrix false sharing matrix

® In addition to communication matrix, ComDetective also produces true

sharing and false sharing matrices
e |t took only 1.28x performance and 1.11x memory footprint overhead to

generate these matrices with ComDetective

s UNIVERSITESI 39




PAR
ReuseTracker PAR o
LAB
© [“@W 0 06
Fast Accurate Sampling based Multithreads
introducing low time  Verified against a set of Uses ready-available Profiles reuse distance in
overhead microbenchmarks with  hardware events in private and shared caches by
known ground truths commodity CPUs also detecting cache line
invalidations
°{-n n
}__
Code line Open source
attribution
Attributes uses and reuses to
source code lines
Sz xoc
% UNIVERSITESi 40




Usage CORE o]

LAB

e ComDetective
o Guiding thread-to-core binding
o Guiding code refactoring to remove false sharing

e ReuseTracker
o Loop transformation that should be implemented to improve locality in
local data caches
o Decide whether to activate hardware-level optimizations such as
adjacent cache line prefetch to reduce high latency memory accesses

[ https://github.com/ParCoreLab/ParCoreTools ]

Spkoc
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Outlook



Future of computing is exciting PR

LAB

e Parallel systems are here to stay
o Homogeneous and heterogeneous systems

e Reducing data movement and synchronization overheads are crucial

e Post-Moore’s Era

o Requires more interaction with vendors and Al community to solve the data
movement problems

o HPCcanhelp Al, Al can help HPC

e Plenty of research opportunities
o We are hiring !!!
& xoc
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Supercomputers mean super power.



By developing software for supercomputers, one can

control that super power.



Call for Collaboration

PAR —
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LAB

For disaster management and large-scale
earthquake simulation

With the help of HPC

e Ground motion prediction

e Spectral acceleration measurements with
high resolution

e Detailed seismic hazard maps

e Al guided building design

Infrastructure support, simulation/modeling,
parallelization, domain expertise

Shake intensity of first quake
I
Moderate Severe

TURKEY

Kahramanmaras

enterof =
irst quake

SYRIA

Earth’s crust has gone a deformation of 3-4 meters
along a line of approximately 400 kms (250 miles)

> UNIVERSITESI


https://www.nytimes.com/interactive/2023/02/10/world/middleeast/kahramanmaras-turkey-earthquake-damage.html?smid=tw-nytimesworld&smtyp=cur

Thank you!

https://parcorelab.ku.edu.tr/
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