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Supercomputing Spotlights is a webinar series presented
by the SIAM Activity Group on Supercomputing to focus
on raising awareness of high-performance computing
opportunities and growing the community. Presentations
emphasizing achievements and opportunities in HPC are
intended for the broad international community,
especially students and newcomers to the field.
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Conclusions, up front

In a world of environmental and financial constraints, in which computational
infrastructure demands a growing sector of lab budgets and global energy
expenditure, HPC must address the need for greater efficiency.

HPC has excelled at this historically in

* hardware

e algorithms

* redefining actual outputs of interest in applications

There are new algorithmic opportunities in
* reduced rank representations
* reduced precision representations



Computational efficiency through tuned approximation:

our journey with tile low rank and mixed precision
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a la renaissance

business as usual

Don’t oversolve: maintain just enough accuracy for the application purpose
Economize on storage: no extra copies of the original matrix



An exaflop/s system is an energy hog

A 10% improvement in computational efficiency implies

Frontier (#1 on Top500) delivers about 1 Exaflop/s at about 50 Gigaflop/s per Watt
- 20 MegaWatts consumed continuously
Representative electricity cost is about $ 0.20 per KiloWatt-hour f;?%
- §$200 per MegaWatt-hour 3
Powering an exaflop/s system costs about S 4,000 per hour
- 10 Kilohour per year (8,760, to be more precise)
-S40 million annual electricity bill for an exaflop/s system
Carbon footprint of a KiloWatt-hour is about 0.5 kg CO2-equivalent (improving!)
- 10,000 kg CO2e hourly carbon footprint for an exaflop/s system
- 100,000 metric tons CO2e annually
- equivalent to 20,000 typical passenger cars in the USA
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S4 million per year to invest elsewhere
equivalent of 2,000 cars off the road for year




An exaflop/s system is an energy hog

10% is
significant!
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Efficiency ("science per Joule”) improvement in HPC?

 We consider 3 categories of efficiency improvement |

- from hardware T,

- from algorithms B

- from redefining the application objective - é@.
* Along the way, we briefly introduce High %“”%“_t 4

Performance Statistical Computing (HPSC)
 We preview a 2022 Gordon Bell finalist to spotlight
efficiency improvements in kernel linear algebra
operations from exploiting
- rank structure (related to smoothness)
- precision structure (related to magnitudes)
* We briefly review some properties of the Laplacian
- for context of efficiency improvements

time series evapotranspiration
May June
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HPC hardware efficiency tracked by the Green 500

60 - https://en.wikipedia.org/wiki/Green500
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Gigaflop/s per Watt
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HPC algorithmic efficiency tracked by Poisson solvers

Consider a Poisson solve in a 3D n x n x n box; natural ordering gives bandwidth of n?

Year Method Reference Storage Flops
1947 GE (banded) | Von Neumann & Goldstine n’

1950 Optimal SOR | Young n?

1971/77 | MILU-CG Reid/Van der Vorst n?

1984 | Full MG Brandt n? @

If n =64, this implies an overall reduction in flops of ~16 million
*Six months is reduced to 1 second (recall: 3.154 x 107 seconds per year)



“Algorithmic Moore’s Law”

HPC progresses even ol | | | | | | |
faster in algorithms O(N) Full MG 4
than in hardware: e
. 6 /
example of Poisson’s 10+ e -
equation in a 3D box ey
Optimal SOR

with 2nd-order FD relative |

36 years means |

/ §L4 4 Speed u p 27 '-ﬁrl\./;oore's Law/| 24 doublings =

Gauss_sa;ge. 16 million-fold
5 10°} g |
Vau=f |6 e
N=n"=(1/h) 10%4 anded GE O(IV 7/3)
I 1 1 L | & g ,
0 5 10 15 20 25 30 35

Keyes et al., SCaLeS Rpt. Vol. 1 (2003), https://www.pnnl.gov/scales/ year



“Algorithmic Moore’s Law” for fusion energy simulations

GKT in
red

MHD in
green

Moore’s
Law in
blue

Magnetic Fusion Energgl: “Effective speed” increases
ar

came from both faster

dware and improved algorithms

Calendar Year

Keyes et al., SCaLeS Rpt. Vol 2 (2004), https://www.pnnl.gov/scales/
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“Algorithmic Moore’s Law” for combustion simulations
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Algorithms improve exponents; Moore only adjusts the base

To scale to extremes, one must start with algorithms with optimal asymptotic
complexity, O(N log? N), p =0, 1, 2. These are typically recursively hierarchical.

Some such algorithms through the decades:

Fast Fourier Transform (1960’s): N> — N log N
Multigrid (1970’s): N*3log N — N

Fast Multipole (1980’s): N? — N

Sparse Grids (1990’s): N — N (log N)41

H matrices (2000’s): N> — k2 N (log N)?

Randomized matrix algorithms (2010’s): N3 — N? log k
277 (20207s): ??? —> ???

“With great computational power comes great algorithmic responsibility.”

— Longfei Gao (PhD, 2013, KAUST AMCS)




Application efficiency from redefining the objective

Sometimes, the output of interest from a
computation is not a solution to high
accuracy everywhere, but a functional of
the solution to a specified accuracy, e.g.

* bound the convective heat flux across
a fluid-solid boundary, obtainable
without globally uniform accuracy
refinement

* use low fidelity surrogates in early
inner iterations of “outer loop
problems”

Machiels, Peraire & Patera, A posteriori FE Output Bounds for the temperature conservative output bound
Incompressible NS Equations, (2001), J. Comp. Phys. 172:401 contour mesh mesh (flux to 1%)
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Improving the “science per Joule” (or per unit time) involves

algorithm/software application
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Lessons from the 1D Laplacian

Two concepts that we need to understand in our pursuit of computational
efficiency in linear algebra, namely

e conditioning (with its implications on precision)

* rank structure

can be motivated with reference to the 1D Laplacian (to be precise, its
negative —A ), discretized here to second-order in FD, FE, or FV:

2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2




Laplacian has ill-conditioned scaling

Let n = 1/h and consider Dirichlet end conditions with n-1 interior points. Then:

Ay =2[1-cos n/n] ~ (/n)?
In1=2[1-cos (n-1)a/n] ~ 4

As n gets large and the mesh resolves more Fourier components, the condition number
grows like the square of the matrix dimension (inverse mesh parameter):

K = A,q/4 ~ (47 n?
In single precision real arithmetic, x approaches the reciprocal of macheps (10-7) for an
n as small as 210 (~ 103). Laplacian-like operators arise throughout modeling and
simulation (diffusion, electrostatics, gravitation, stress, graphs, etc.), implying O(1)
error in the result, so HPC has traditionally demanded double precision by default.
GPUs were accepted only when they offered hardware DP (2008, NVIDIA GTX 280).

For the biharmonic, even double precision gives out at n = 21%, Some multiscale codes
require quadruple precision, often available only in software.



Laplacian has low-rank off-diagonal blocks

[ 2 -1 ' 0
A is full-rank, but -2 -l < =l°l[—1 00 0]
-1 2 [-1 1
A

its off-diagonal
blocks have low

rank
N @
s inverse |§ 6 12
dense, but it 5 10
L L1
inheritsthe A =§>< 4 8
same rank 3 6
structure 2 4
o 2




Now: a renaissance in numerical linear algebra (1)

It turns out that many formally dense matrices arising
from
* covariances in statistics
* integral equations with displacement kernels
* Schur complements within discretizations of PDEs
* Hessians from PDE-constrained optimization
* nonlocal operators from fractional differential

equations

e radial basis functions from unstructured meshing

* kernel matrices from machine learning op!}nb B Eu"”
applications i ot

have exploitable low-rank structure in “most” their off-
diagonal blocks.



Now: a renaissance in numerical linear algebra (2)

It turns out that many matrices arising in
applications have blocks of relatively small norm
and can be replaced with reduced precision.

Of course, mixed precision algorithms have a
long history, e.g., iterative refinement (1963,
Wilkinson), where multiple copies of the matrix
are kept in different precisions for different
purposes.

There are many such new algorithms; see
Higham & Mary, Mixed precision algorithms in
numerical linear algebra, Acta Numerica (2022).



Now: a renaissance in numerical linear algebra (3)

Moreover, these ideas can be combined,
as in this 1M x 1M dense symmetric
covariance matrix:

 Originalin DP:4TB

e Replacement: 0.915TB

Smaller workingsets mean larger

problems fit in GPUs and last-level caches 55!

on CPUs, for data movement savings

* Also, net computational savings

e Data structures and programs are
more complex
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Complexities of rank-structured factorizations

e “Straight” LU or LDLT
- | Operations O(V3)]
- | Storage O(V?) |
e Tile low-rank (Amestoy, Buttari, UExcellent & Mary, SISC, 2016)*
. [ Operations 0(k0-5]\72)]
. | Storage O(k*5 N'5) |

for uniform blocks with size chosen optimally for max rank & of any compressed block, bounded
number of uncompressed blocks per row

e Hierarchically low-rank (Grasedyck & Hackbusch, Computing, 2003)

. | operations O(k2 N log2N)|
- | Storage O(k N) |

for strong admissibility, where k is max rank of any compressed block
* First reported O(k®S5 N25), then later O(k%5 N2?) for variant that reorders updates and recompression




Rank: a tuning knob

®* Replace dense blocks with reduced rank representations, whether “born
dense” or as arising during matrix operations

- use high accuracy (high rank) to build “exact” solvers
- use low accuracy (low rank) to build preconditioners

®* Consider hardware parameters in tuning block sizes and maximum rank
parameters, to complement mathematical considerations
- e.g., cache sizes, warp sizes

* Select from already broad and ever broadening algorithmic menu to form
low-rank blocks (next slide)
- traditionally a flop-intensive vendor-optimized GEMM-based flat algorithm

* Implementin “batches” of leaf blocks
- flattening trees in the case of hierarchical methods



Low-rank approximations for compressible tiles

Options for forming data sparse representations of the amenable
off-diagonal blocks

standard SVD: O(n?), too expensive, especially for repeated compressions
after additive tile manipulations

randomized SVD (Halko et al., 2011): O(n?log k) for rank k, requires only a
small number of passes over the data, saving over the SVD in memory
accesses as well as operations

adaptive cross approximation (ACA) (Bebendorf, 2000): O(k*n log n),
motivated by integral equation kernels

matrix skeletonization (representing a matrix by a representative collection
of row and columns), such as CUR, sketching, or interpolatory
decompositions based on proxies



Algorithmic opportunities

With such new algorithms, today’s HPC can extend many applications
that possess
memory capacity constraints (e.g., geospatial statistics,

PDE-constrained optimization)

energy constraints (e.g., remote telescopes)
real-time constraints (e.g., wireless communication)
running time constraints (e.g., chemistry, materials,

genome-wide associations)




Dynamic runtimes for HPC implementations

e Uses task graph of sequential code

* Ensures that data dependencies are respected

* Schedules the tasks across appropriate available hardware resources

* Optimizes memory placement for nonuniform access

* Enhances software productivity by abstracting the hardware
 Examples (available for shared memory, distributed memory, and GPUs):

T Oomess Ompss-2

o BSC, Barcelona
o Pragma-based, extending OpenMP to asynch execution Programming Model

- StarPU
o INRIA, Bordeaux Sta r P U
o Unified runtime for heterogeneous multicore arch

- PaRSEC

o ICL, University of Tennessee Pa R SEC

o Parallel runtime scheduling and execution control




Example: covariance matrices from spatial statistics

Climate and weather applications have many measurements located regularly
or irregularly in a region; prediction is needed at other locations

®* Modeled as realization of Gaussian or Matérn spatial random field, with
parameters to be fit

* Leads to evaluating, inside an optimization loop, the log-likelihood function
involving a large dense (but data sparse) covariance matrix 2

((0) = —%sz—l(e)z = %log|2(9)|

* Apply inverse X! and determinant | 2" | with Cholesky



Synthetic scaling test

Random coordinate generation within the unit square or unit cube with
Matérn kernel decay, each pair of points connected by square exponential
decay, a;; ~ exp (-c|x;- x|
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HICMA TLR vs. Intel MKL on shared memory

« Gaussian kernel to accuracy 1.0e-8 in each tile
» Three generations of Intel manycore (Sandy Bridge, Haswell, Skylake)
« Two generations of linear algebra (classical dense and tile low rank)

NB: log scale103 | R, "1 Red arrows:
speedups from
hardware,
same algorithm

10?
3 Aﬁﬁ‘
£ 2;& Green arrows:
._
: speedups from
classical 10 .
T algorithm,
© MKL-HSW same hardware
) MKL-SKL
tile low rank e HICMA-SNB
100 | . | s+ HICMA-HSW
w/StarPU el —/=  HICMA-SKL Blue arrow:
27K 40K 54K 68K81K 108KI135K 176K 230K 297K from both

Matrix size

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018



Memory footprint for TLR fully DP matrix of size 1M

NB: log scale 104

418 I\

8 103 -

O | mm— Full rank

g’ | e Synthetic 1to 2-orders of

GE) | ==O=== Statistics magnlttfde less,

S 102 [ depending upon
accuracy (x-axis)

o~

10!
10 1073 10°® 107° 10712 10710
Accuracy Threshold

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, EuroPar 2018



HICMA TLR vs. ScaLAPACK on distributed memory

I I | I

|
=== SCcalLAPACK 16 nodes
==O=== Scal APACK 32 nodes
==O=== ScalAPACK 64 nodes

NB: log scale  10°

Green arrow:

| = ScalAPACK 128 nodes
10° 1" e SCaLAPACK 256 nodes —f a speedup from
= A== HICMA-TLR Cholesky-1 algorithm,

same 16 nodes

Time(s)
=
<

101 4

10°

54K 81K 108KI35K 189K 270K 351K 459K594K
Matrix size

Shaheen Il at KAUST: a Cray XC40 system with 6,174 compute nodes, each of which has two 16-core Intel Haswell CPUs
running at 2.30 GHz and 128 GB of DDR4 main memory

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018



Comparing execution traces for Cholesky factorization

original
Tile low rank has a higher percentage of idle time (red)
vs. computation (green), relative to flop-intensive dense
Scales less efficiently relative to itself (less able to cover
TLR

data motion with computation)

However, for an acceptable accuracy, it is 10X superior in
time and energy

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018



Extreme Tile Low Rank

Cholesky factorization of a TLR matrix derived from Gaussian covariance of random
distributions, up to 42M DOFs, on up to 4096 nodes (131,072 cores) of a Cray XC40
* would require 7.05 PetaBytes in dense DP (using symmetry)

* would require 77 days by ScaLAPACK (at the TLR rate of 3.7 Pflop/s)

NB:log scale Fully dense

computation

32000 4 would have cost

2 about $S1.03M in
@ 16000 4 h
= electricity and
8000 - generated about
3 2500 metric tons
4000 {16 @st-3D-sge
16 ®<t_ob_sqexp Of CO2e
0 10 20 30 5

Millions of DOFs

Cao, Pei, Akbudak, Mikhalev, Bosilca, Ltaief, K. & Dongarra, Extreme-Scale Task-Based Cholesky Factorization Toward Climate
and Weather Prediction Applications. PASC20 (ACM)



Motivations for mixed precision

* Mathematical: (much) better than “zero precision”

Statisticians often approximate remote diagonals as zero after performing a diagonally clustered

space-filling curve ordering, so their coefficients must be orders of magnitude down from the
diagonals

— not just smoothly decaying in the low-rank sense, but actually small
« Computational: faster time to solution

hence lower energy consumption and higher performance, especially by exploiting heterogeneity

Peak Performance in TF/s V100 NVLink A100 NVLink m

FP64
FP32 139.5

FP64 Tensor Core 15 19.5
FP32 Tensor Core 8x 156 16x 16x
FP16 Tensor Core 120

rel. 2017 rel. 2020 rel. 2023



Mixed precision geospatial statistics on GPUs

» (Gaussian kernel to accuracy 1.0e-9 in each tile
« Three generations of NVIDIA GPU (Pascal, Volta, Ampere)
« Two generations of linear algebra (double precision and mixed DP/HP)

22 ' ) ) T T T T T
*—+ A100 Mixed DP/HP : : : : I
sol] ¥ V100 Mixed DPHP|: 1« T A
&~ -4 A100 DP(2020) : : : : Red Arrow:
e - V100 DP(2017) : : ' : speedup from
25 P100 DP (2014) ———m=E === {-- hardware, same
: : algorithm
«20 I -r]--
§ : } 10X Green Arrows:
E 15 : <{‘;_ e speedup from
| algorithm, same
: : hardware
10 | e P
| |
' 1]. Blue Arrow:
5 2 BT from both
-
|
I

0 I I | I I | I
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Matrix Sizes

Ltaief, Genton, Gratadour, K. & Ravasi, 2022, Responsibly Reckless Matrix Algorithms for HPC Scientific
Applications, Computing in Science and Engineering



Mixed precision geospatial statistics on distributed memory

e Covariance matrices from 3D geospatial statistics
* Different mixes of DP (from 100% to 1%), SP, and HP on three architectures
* Speedups up to ~2.5X

20cJ096 nodes of Shaheen-2 (Intel) 1536 nodes of HAWK (AMD) 128 nodes of Summit (NVIDIA)
23(5)88*+ SP100 —A— DP100 Agigg, _‘_‘ SP100 d‘h‘ DP100 ﬁggg,—o— DP1HPOO LA- DP10SP30HP60

—4— DP5SP5HP90 -~ DP10SP90

S6500| —#= DP10SP90 %gggg:-o- DP10SP90 10000 g cpr00 —4— DP30SP70
= 6000 i 2 5200 \ I 7A 9000\ —i— pP10SP10HPBO  ~+— DP100 B
=

— 5500 i E 1500 ‘ A
/( 7000
5000
4000{ /i‘}‘

Performance (Tflop/s)

85000 w
S e A —
€ 3500 //", £ 3600
£ 3000 £ 3200
25001 2800 —* 3000
2000 | & 5400 *— o 2000
1500 \ \ ™
T

T T T 200(3) 104091
3 8 T T T T
EE DP10SP90 B SP100 777 4.0{ mmm DP30SP70 mEE DP10SP10HPS80 mEEE SP100 |
DP10SP90 Emm SP100 3.67 mmE DP10SP90 w#s DP5SPSHP90 w7 DP1HP99 |
2, 1.92 .02 .05 .06 2.07 oy h o 187 1.98 g.gf— DP10SP30HP60 =
1.83 aogl |
214 1.4 1.5 1.5 1.5 % . ) 1.5 5> } | 7
] 7
o 9] 22
N " | i i i
0 | .
1474560 1966080 2457600 2949120 3440640 2580480 3072000 3563520 : 655360 860160 1064960

Matrix Size Matrix Size

Matrix Size

Cao et al., Extreme-Scale Task-Based Cholesky Factorization Toward Climate and Weather Prediction Applications, ACM PASC’20
Abdulah et al., Accelerating Geostatistical Modeling and Prediction With Mixed-Precision Computations, IEEE TPDS'21



2022 Gordon Bell Prize finalist story

Geostatistical
Modeling and Inference
at Extreme Scales
via Tile Low Rank and Mixed Precision

* 2022 Turing Award Recipient




Finalist paper

Reshaping Geostatistical Modeling and Prediction
for Extreme-Scale Environmental Applications

Qinglei Cao*®, Sameh Abdulah'”, Rabab Alomairy'=, Yu Pei*®, Pratik Nag'>, George Bosilca®’,
Jack Dongarra®>*’, Marc G. Genton', David E. Keyes'~, Hatem Ltaief'’, and Ying Sun'?

II. PERFORMANCE ATTRIBUTES

Performance Attributes Our submission

- : — i i Performance
Problem Size Nine million geospatial locations' results herein
Category of achievement Time-to-solution and scalability are not final. to
Type of method used Maximum Likelihood Estimation (MLE) be im rovec;
Results reported on basis of | Whole application - \mPp

- : . with more access

Precision reported Double, single, and half precision tot ¢
System scale 16K Fujitsu A64FX nodes of Fugaku! © tune on atop
Measurement mechanism Timers; FLOPS; Performance modeling System




App: spatial & spatio-temporal environmental statistics

Space and space-time modeling using Maximum Likelihood Estimation
(MLE) on two environmental datasets

/‘]/\. T e e S
© e 0w w wm e 1w o 10 0 6

2D soil moisture data
at the top layer of the
Mississippi River basin

2021 monthly evapotranspiration (ET)
over Central Asia

[means are subtracted out in these graphs]



Statistical “emulation” (complementary to simulation)

Predicts quantities directly from data (e.g., weather, climate)

— assumes a correlation model

— data may be from observations or from first-principles simulations
— statistical alternative to large-ensemble simulation averages

Relied upon for economic and policy decisions

— predicting demands, engineering safety margins, mitigating hazards,
siting renewable resources, etc.

— such applications are among principal supercomputing workloads
Whereas simulations based on PDEs are usually memory

bandwidth-bound, emulations based on covariance matrices are
usually compute-bound (achieve a high % of bandwidth peak)



The computational ehallenrge opportunity

« Contemporary observational datasets can be huge
— Collect p observations at each of nlocations Z,(x,y,z,t,)
— Find optimal fit of the observations Z to a plausible function
— Infer values at missing locations of interest

« Maximum Likelihood Estimate (MLE)
— model for estimating parameters required to perform inference
« Complexity:

— Arithmetic cost: solve systems with and calculate determinant of n-by-n
covariance matrix

— 0((pn)?) floating-point operations and 0((pn)?) memory

— Memory footprint: 10° locations require 4 TB memory (double precision,
invoking symmetry, for p=1)



Motivation: High Performance Computational Statistics (HPCS)

“Increasing amounts of data are being produced (e.g., by remote
sensing instruments and numerical models), while techniques to
handle millions of observations have historically lagged behind...
Computational implementations that work with irregularly-spaced
observations are still rare.” - Dorit Hammerling, NCAR, July 2019

1M X 1M dense sym DP matrix requires 4 TB, N3~ 10" Flops F—

Traditional approaches: Better approaches: y:(SHBLUE”
Global low rank Hierarchical low rank T
Zero outer diagonals Reduced precision outer

diagonals

b




Is this problem important?

The potential for this combination in spatial statistics generally is
high... The authors have demonstrated controllable and high
accuracy typical of universal double precision, while exploiting
mostly half precision, and keeping relatively few tiles clustered
around the diagonal in their original fully dense format. The
result is reduction in time to solution of an order of magnitude or
more, with the ratio of improvement growing with problem size,
but already transformative.

-- Professor Sudipto Banerjee, UCLA



Is this problem important?

The innovations described in numerical linear algebra and in dynamic
runtime task scheduling deliver an order of magnitude or more of
reduction in execution time for a sufficiently large spatial or spatial-
temporal data set using the Maximum Likelihood Estimation (MLE) and
kriging paradigm. Perhaps more importantly, by reducing the memory
footprint of such models, they allow much larger datasets to be
accommodated within given computational resources. The advance
this creates for spatial statisticians — geophysical and otherwise — is
potentially immense, given that this result is now available through
ExaGeoStat.

--Professor Doug Nychka, Colorado School of Mines



Is this problem important?

An especially attractive aspect of the submission is the innovation that
it required in the a64fx ARM architecture of Fugaku, namely the
accumulation in 32 bits of the 16-bit floating point multiply. | regard
this aspect of the KAUST-UT-RIKEN collaboration of abiding benefit
beyond the particular application of this submission.

As you know, my mottos for data science are that “Statistics is the
‘Physics’ of Data” and “Statistics is to Machine Learning as Physics is to
Engineering.” Your Gordon Bell campaign is accelerating the use of
spatial statistics to allow it to keep up with exascale hardware.

-- Dr. George Ostrouchov, ORNL



https://github.com/ecrc/exageostat

The ExaGeoStat project is a high performance software package for computational
Likelihood Estimation (MLE) method is used to optimize the likelihood function f
predict missing observations in the context of climate, weather forecastin

unified software stack to target various hardware architectures with

based shared and di y systems. At large-scal

istics on many-core systems. The Maximum
n spatial set. MLE provides an efficient way to

cations. This machine learning framework deploys a
le-source simulation code, from commodity x86 to GPU-

covariance matrix to address the curse of dimensionality. In

memory footprint and the algorithmic complexity of th

pr

sizes, further exploits the data sparsity of the

lar, ExaGeoStat supports Tile Low-Rank (TLR) approximation and
mixed-precision computations to model univariate, multivagg#®space and space-time problems. This translates into a reduction of the

‘operation, while still maintaining the overall fidelity of the underlying model.

| Climate/Weather Applications

Modeling/Inference

Optimization Library (e.g., NLopt)

Parallel Linear Algebra Libraries

Chameleon (Dense Computation)| |[HICMA (Tile Low-Rank (TLR) Computation)

[crameleon (DenseComputation) [WCMA T Lo Rk (T Computaton]|

ExaGeoStat v1.1.0

« Supports large-scale geospatial datasets (un >/ bivariate).

« Estimates the maximum likelihood using

* Leverages the data sparsity structy

+ Performs matrix computations
Super-Tile (DST) and Tile
mixed-precision (MP)

« Predicts observ: lUsing dense, DST.

iable accuracies using Diagonal
nk (TLR) approximations as well as

Computing the Cholesky-Based MLE Method

ic and real datasets.
/e matrix operator.

imini
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TLR, and MP techniques
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Space- deling Prediction

* Real dataset; MERRA2
+ Data description: an hourly data:
+ Extreme Gaussian geostatistical spati

Samples of the Training Datasets [Year: 2016

References

s dataset of hourly PM 2.5 measurements from NASA Earth deta
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Mixed-Precision Performance on Distributed-Memory Systems

TLR Aceuracy Impact on Parameter Estimates, Bvariate Case

4096 Shaheen-l Cray XCAD Nodes 1536 Hawk AMD EPYC Nodes. 128 Summit [BM/ NVIDIA V100 Nodes

Current Research
« Support for out-of-core algorithms.
years (2016- 2018) with a total size of 550 spatial locations.

omputations. + Assist the convergence of MLE
b GO with a prediction phase.

* Deploy the PaRSEC runtime system.

+ Combine TLR with MP to accelerate
MLE for larger problem sizes.

* Model spacetime, non{Gaussian,

Lo
Prediction Accuracy using Space Time ma and non stationary geospatialdat.

) 77100201
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Cholesky
Factorization DAG / Operation

(4 X 4 Tile Matrix)

StarPU/PaRSEC Dynamic Runtime System

Drivers (e.g., Pthreads, CUDA, OpenCL, MPI)

Shared Memory Systems

Distributed Memory Systems

A collaboration with

e, e IOLDUT
bizia= oy

With support from Sponsored by
"

L R[5 @Hnvio. @ 3 OSR

X86 CPU

|| AArch64 CPU GPU

Sameh Abdulah,

Research Scientist

ECRC, KAUST



ExaGeoStat's 3-fold framework

« Synthetic Dataset Generator

— Generates large-scale geospatial datasets which
can be used separately as benchmark datasets
for other software packages

 Maximum Likelihood Estimator (MLE)
— Evaluates the maximum likelihood function on
large-scale geospatial datasets

— Supports dense full machine precision, Tile Low-
Rank (TLR) approximation, low-precision
approximation accuracy, and now TLR-MP 1

- ExaGeoStat Predictor /\_' siall
— Infers unknown measurements at new geospatial 4 3 J

locations from the MLE model [




The portable ExaGe25wat sonware stack
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Maximum Likelihood Estimator (MLE)

1 1
« The log-likelihood function: £(0) = —g log(2m) — 5 log |%(0)| — §ZT2(0)“IZ.

* Optimization over 8 to maximize the likelihood function estimation
until convergence

— generate the covariance matrix X(8 ) using a specified kernel

— evaluate the log determinant and the inverse operations, which require
a Cholesky factorization of the given covariance matrix

— update 8

« NLOPT" is typically used to maximize the likelihood

« Parallel PSwarm optimization algorithm runs several likelihood

estimation steps at the same time (an embarrassingly parallel outer
loop)

*open-source library by Prof. Steve Johnson of MIT



Covariance functions supported in ExaGeoStat

Univariate Matern Kernel Space/Time Nonseparable Kernel
01 r\% r g { Ih]|/as }
) =—— [— — & =—M, ;
C(r;6) 203-11°(63) (92) o (92) =) arlul® +1 (ar|u|?@ +1)P/2
(3 parameters to fit: variance, range, smoothness) (6 parameters to fit, add: time-range, time-smoothness, and separability)
Multivariate Parsimonious Kernel Tukey g-and-h Non-Gaussian Field with Kernel
Il gy — %% M)Wi (M) B=—t (s K, (vt
Cis (IIhll; 0) = 2vii~1T (v;5) ( a Kos e pz(h) I'(v)2v—1 V¢ Y ¢
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Multivariate Flexible Kerne Powered Exponential Kernel

Che u) = a? clall 5
B 1) = 2T o) (@lue + 157597 \ (alue + 172 C(r;6) = foexp o)
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How to choose the rank?

Tiles are compressed to low rank based on user-supplied tolerance
parameter, based on the first neglected singular value-vector pair.

A tile-centric, structure-aware heuristic decides at runtime whether
the tile should remain in low rank form or converted back to dense,

based on estimates of the overheads of maintaining and operating
with the compressed form.

The structure-aware runtime decision is based only the estimated
number of flops and time to solution, while the precision-aware
runtime decision (next slide) is based only on the accuracy
requirements of representing the matrix in the Frobenius norm.



How to choose the precision?

 Consider 2-precision case, with machine epsilons (unit roundoffs) u,,,, and
Uiy resp.

« Let || 4]z be the Frobenius norm of the global matrix square matrix A4,
which is computable by streaming 4 through just once

 Let n; be the number of tiles in each dimension of 4
* Then any tile A; such that ny || 4;l[F/ || Allr < wpign / wy, 1s stored in low
precision; otherwise kept in high
« The mixed precision tiled matrix 4 thus formed satisfies
|4 - Allp < upign || Al
» Generalizes to multiple precisions
« Tiles can be converted dynamically at runtime

Higham & Mary, Mixed Precision Algorithms in Numerical Linear Algebra (2022), Acta Numerica, pp. 347-414



Accuracy on synthetic 2D space dataset

MLE parameters

variance range smoothness
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Accuracy on real 3D (2D space + time) dataset

Variants Variance (fg) | Range (61) | Smoothness (62)
Dense FP64 1.0087 3.7904 0.3164
MP+dense 0.9428 3.8795 0.3072
MP+dense/TLR 0.9247 3.7756 0.3068
Variants Range-time (f3) | Smoothness-time (84) | Nonsep-param (65)
Dense FP64 0.0101 3.4890 0.1844
MP+dense 0.0102 3.4941 0.1860
MP+dense/TLR 0.0102 3.5858 0.1857
Variants Log-Likelihood (1lh) || MSPE
Dense FP64 -136675.1 0.9345 mean-square
MP+dense -136529.0 0.9348 orediction error
MP+dense/TLR -136541.8 0.9428




Performance on up to 16K nodes of Fugaku

Time-to-solution (second)

103

102

~3x greater size for same time

A 4

~3x less time for same size

dASaR

4096: Dense FP64
4096: MP+dense
2048: MP+dense/TLR
4096: MP+dense/TLR
8192: MP+dense/TLR
16384: MP+dense/TLR

To be improved:

Still tuning runtime
system PaRSEC on
Fugaku’s 32GB/node

Matrix Size

| | |
i1.o08M 2.16M 3.24M 4.32M 5.40M6.22M

|
9.00M




Tile map for 2D space kernel with ~1M points

370 tiles of size 2700 in each dimension

weak correlation

strong correlation

0
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memory footprint
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default dense double is ¥4 TB

0

B Dense FP&4
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Low rank FP64

Low-rank FP32
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Hourglass model of software

algorithmic

https://github. hi —
ps://github.com/ecrc/hicma infrastructure

architectures




Conclusions recapped

In a world of environmental and financial constraints, in which computational
infrastructure demands a growing sector of lab budgets and global energy
expenditure, HPC must address the need for greater efficiency.

HPC has excelled at this historically in

* hardware

e algorithms

* redefining actual outputs of interest in applications

There are new algorithmic opportunities in
* reduced rank representations
* reduced precision representations



For follow-up

»  Parallel Approximation of the Maximum Likelihood Estimation for the Prediction of Large-
Scale Geostatistics Simulations, S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton & D. Keyes, 2018
IEEE International Conference on Cluster Computing (CLUSTER), 2018, pp. 98-108, doi:
10.1109/CLUSTER.2018.00089.

*  Hierarchical Algorithms on Hierarchical Architectures, D. Keyes, H. Ltaief & G. Turkiyyah,
2020, Philosophical Transactions of the Royal Society, Series A 378:20190055, doi
10.1098/rsta.2019.0055

* Responsibly Reckless Matrix Algorithms for HPC Scientific Applications, H. Ltaief, M. G.
Genton, D. Gratadour, D. Keyes & M. Ravasi, 2022, Computing in Science and Engineering,
doi 10.1109/MCSE.2022.3215477

* Reshaping Geostatistical Modeling and Prediction for Extreme-Scale Environmental
Applications, Q. Cao, S. Abdulah, R. Alomairy, Y. Pei, P. Nag, G. Bosilca, J. Dongarra, M. G.
Genton, D. E. Keyes, H. Ltaief & Y. Sun, 2022, in proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis (SC'22), IEEE Computer
Society (ACM Gordon Bell Finalist, to appear).

*  Mixed Precision Algorithms in Numerical Linear Algebra, 2022, N. J. Higham & T. Mary, Acta
Numerica, pp. 347—414, doi:10.1017/S0962492922000022.



Thank you, Collaborators!

KAUST Supercomputing Core Lab, HLRS-Stuttgart, Oak Ridge LCF, RIKEN, and:
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COMPUTING LABORATORY

George Boslica Jack Dongarra

)

,
%
g |
.l

Rabab Alomairy Pratik Nag Sameh Abdulah Hatem Ltaief Ying Sun Marc Genton




s
=0

S TR *aE

=
O
>
=
o=
(C
i o
—

2 i 1




Want to contribute to computationally efficient infrastructure?

» Contributions are required up and down the software tool chain of
many applications.

 The HICMA group in the Extreme Computing Research Center at
KAUST periodically has post-doc openings.

* Please enquire of Principal Research Scientist Hatem Ltaief, if
interested, at

hatem.ltaief@kaust.edu.sa





