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Conclusions, up front

In a world of environmental and financial constraints, in which computational 
infrastructure demands a growing sector of lab budgets and global energy 
expenditure, HPC must address the need for greater efficiency.

HPC has excelled at this historically in
• hardware
• algorithms
• redefining actual outputs of interest in applications

There are new algorithmic opportunities in
• reduced rank representations
• reduced precision representations
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Computational efficiency through tuned approximation: 
our journey with tile low rank and mixed precision

Don’t oversolve: maintain just enough accuracy for the application purpose
Economize on storage: no extra copies of the original matrix
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An exaflop/s system is an energy hog

• Frontier (#1 on Top500) delivers about 1 Exaflop/s at about 50 Gigaflop/s per Watt
- 20 MegaWatts consumed continuously

• Representative electricity cost is about $ 0.20 per KiloWatt-hour
- $ 200 per MegaWatt-hour

• Powering an exaflop/s system costs about $ 4,000 per hour
- 10 Kilohour per year (8,760, to be more precise)
- $40 million annual electricity bill for an exaflop/s system

• Carbon footprint of a KiloWatt-hour is about 0.5 kg CO2-equivalent (improving!)
- 10,000 kg CO2e hourly carbon footprint for an exaflop/s system
- 100,000 metric tons CO2e annually 
- equivalent to 20,000 typical passenger cars in the USA

A 10% improvement in computational efficiency  implies 
• $4 million per year to invest elsewhere
• equivalent of 2,000 cars off the road for year



An exaflop/s system is an energy hog

10% is 
significant!  

What about
10X?



Efficiency (“science per Joule”) improvement in HPC?

• We consider 3 categories of efficiency improvement
- from hardware
- from algorithms
- from redefining the application objective

• Along the way, we briefly introduce High 
Performance Statistical Computing (HPSC)

• We preview a 2022 Gordon Bell finalist to spotlight 
efficiency improvements in kernel linear algebra 
operations from exploiting 

- rank structure (related to smoothness)
- precision structure (related to magnitudes)

• We briefly review some properties of the Laplacian
- for context of efficiency improvements

time series evapotranspiration



HPC hardware efficiency tracked by the Green 500

https://en.wikipedia.org/wiki/Green500

Gigaflop/s per Watt 
for #1 on the Green 500

> 15X in ten years



HPC algorithmic efficiency tracked by Poisson solvers

Year Method Reference Storage Flops

1947 GE (banded) Von Neumann & Goldstine n5 n7

1950 Optimal SOR Young n3 n4 log n

1971/77 MILU-CG Reid/Van der Vorst n3 n3.5 log n

1984 Full MG Brandt n3 n3

*Six months is reduced to 1 second  (recall: 3.154 x 107 seconds per year) 
*If  n = 64, this implies an overall reduction in flops of ~16 million

Consider a Poisson solve in a 3D  n x n x n box; natural ordering gives bandwidth of n2



“Algorithmic Moore’s Law”

HPC progresses even 
faster in algorithms 
than in hardware: 
example of Poisson’s 
equation in a 3D box
with 2nd-order FD

O(N)

O(N 7/3)

Ñ2u=f 64

64
64

Keyes et al., SCaLeS Rpt. Vol. 1 (2003), https://www.pnnl.gov/scales/

N = n3 = (1/h)3

36 years means 
24 doublings =
16 million-fold



“Algorithmic Moore’s Law” for fusion energy simulations

“Semi-implicit”:

All waves treated 
implicitly, but still 
stability-limited by 
transport

“Partially implicit”:

Fastest waves 
filtered, but still 
stability-limited by 
slower waves

Keyes et al., SCaLeS Rpt. Vol 2 (2004), https://www.pnnl.gov/scales/

GKT in 
red

MHD in 
green

Moore’s 
Law in 
blue



“Algorithmic Moore’s Law” for combustion simulations
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Algorithms improve exponents; Moore only adjusts the base 

To scale to extremes, one must start with algorithms with optimal asymptotic 
complexity, O(N logpN), p = 0, 1, 2. These are typically recursively hierarchical.
Some such algorithms through the decades:

– Fast Fourier Transform (1960’s): N2 → N log N
– Multigrid (1970’s): N4/3 log N → N
– Fast Multipole (1980’s): N2 → N
– Sparse Grids (1990’s): Nd → N (log N)d-1
– H matrices (2000’s): N3 → k2 N (log N)2

– Randomized matrix algorithms (2010’s): N3 → N2 log k
– ??? (2020’s): ??? → ???

“With great computational power comes great algorithmic responsibility.” 
– Longfei Gao (PhD, 2013, KAUST AMCS)



Application efficiency from redefining the objective
Sometimes, the output of interest from a 
computation is not a solution to high 
accuracy everywhere, but a functional of 
the solution to a specified accuracy, e.g.
• bound the convective heat flux across 

a fluid-solid boundary, obtainable 
without globally uniform accuracy 
refinement 

• use low fidelity surrogates in early 
inner iterations of “outer loop 
problems”

temperature 
contour

conservative 
mesh

output bound 
mesh (flux to 1%)

Machiels, Peraire & Patera, A posteriori FE Output Bounds for the 
Incompressible NS Equations,  (2001), J. Comp. Phys. 172:401



Summary so far

Improving the  “science per Joule” (or per unit time) involves: 

In a fortunate world, these are orthogonal: the desired app can 
employ the best algorithm on the most efficient hardware.

applicationalgorithm/software

Dense DP

Dense SP

Dense HP

TLR DP

TLR SP

architecture



Lessons from the 1D Laplacian

Two concepts that we need to understand in our pursuit of computational 
efficiency in linear algebra, namely
• conditioning (with its implications on precision)
• rank structure
can be motivated with reference to the 1D Laplacian (to be precise, its 
negative –Δ ), discretized here to second-order in FD, FE, or FV:



Laplacian has ill-conditioned scaling

Let n = 1/h and consider Dirichlet end conditions with n-1 interior points. Then: 
λ1 = 2 [1 - cos π/n]          ~  (π/n)2

λn-1 = 2 [1 - cos (n-1)π/n]  ~  4
As n gets large and the mesh resolves more Fourier components, the condition number 
grows like the square of the matrix dimension (inverse mesh parameter):

κ =  λn-1 / λ1 ~  (4/π2) n2

In single precision real arithmetic, κ approaches the reciprocal of macheps (10-7) for an 
n as small as 210 (~ 103).  Laplacian-like operators arise throughout modeling and 
simulation (diffusion, electrostatics, gravitation, stress, graphs, etc.), implying O(1) 
error in the result, so HPC has traditionally demanded double precision by default. 
GPUs were accepted only when they offered hardware DP (2008, NVIDIA GTX 280).

For the biharmonic, even double precision gives out at n = 210 .  Some multiscale codes 
require quadruple precision, often available only in software.  
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Its inverse is 
dense, but it
inherits the 
same rank
structure

Laplacian has low-rank off-diagonal blocks

A is full-rank, but 
its off-diagonal
blocks have low 
rank



Now: a renaissance in numerical linear algebra (1)

It turns out that many formally dense matrices arising 
from

• covariances in statistics
• integral equations with displacement kernels
• Schur complements within discretizations of PDEs
• Hessians from PDE-constrained optimization
• nonlocal operators from fractional differential 

equations
• radial basis functions from unstructured meshing
• kernel matrices from machine learning 

applications
have exploitable low-rank structure in “most” their off-
diagonal blocks.



Now: a renaissance in numerical linear algebra (2)

It turns out that many matrices arising in 
applications have blocks of relatively small norm 
and can be replaced with reduced precision.

Of course, mixed precision algorithms have a 
long history, e.g., iterative refinement (1963, 
Wilkinson), where multiple copies of the matrix 
are kept in different precisions for different 
purposes.

There are many such new algorithms; see 
Higham & Mary, Mixed precision algorithms in 
numerical linear algebra, Acta Numerica (2022).



Now: a renaissance in numerical linear algebra (3)

Moreover, these ideas can be combined, 
as in this 1M x 1M dense symmetric 
covariance matrix:
• Original in DP: 4 TB
• Replacement: 0.915 TB
Smaller workingsets mean larger 
problems fit in GPUs and last-level caches 
on CPUs, for data movement savings
• Also, net computational savings
• Data structures and programs are 

more complex



n “Straight” LU or LDLT

§ Operations O(N3)
§ Storage O(N2)

n Tile low-rank (Amestoy, Buttari, L’Excellent & Mary, SISC, 2016)*

§ Operations O(k0.5 N2)
§ Storage O(k0.5 N1.5)
§ for uniform blocks with size chosen optimally for max rank k of any compressed block, bounded 

number of uncompressed blocks per row 

n Hierarchically low-rank (Grasedyck & Hackbusch, Computing, 2003) 

§ Operations O(k2 N log2N)
§ Storage O(k N)
§ for strong admissibility, where k is max rank of any compressed block

* First reported O(k0.5 N2.5), then later O(k0.5 N2) for variant that reorders updates and recompression

Complexities of rank-structured factorizations



Rank: a tuning knob

• Replace dense blocks with reduced rank representations, whether “born 
dense” or as arising during matrix operations
- use high accuracy (high rank) to build “exact” solvers
- use low accuracy (low rank) to build preconditioners

• Consider hardware parameters in tuning block sizes and maximum rank 
parameters, to complement mathematical considerations
- e.g., cache sizes, warp sizes

• Select from already broad and ever broadening algorithmic menu to form 
low-rank blocks (next slide)
- traditionally a flop-intensive vendor-optimized GEMM-based flat algorithm

• Implement in “batches” of leaf blocks
- flattening trees in the case of hierarchical methods



Low-rank approximations for compressible tiles

Options for forming data sparse representations of the amenable 
off-diagonal blocks
• standard SVD: O(n3), too expensive, especially for repeated compressions 

after additive tile manipulations
• randomized SVD (Halko et al., 2011): O(n2 log k) for rank k, requires only a 

small number of passes over the data, saving over the SVD in memory 
accesses as well as operations

• adaptive cross approximation (ACA) (Bebendorf, 2000):  O(k2n log n), 
motivated by integral equation kernels

• matrix skeletonization (representing a matrix by a representative collection 
of row and columns), such as CUR, sketching, or interpolatory 
decompositions based on proxies



With such new algorithms, today’s HPC can extend many applications 
that possess

• memory capacity constraints (e.g., geospatial statistics,     
PDE-constrained optimization)

• energy constraints (e.g., remote telescopes)
• real-time constraints (e.g., wireless communication)
• running time constraints (e.g., chemistry, materials,      

genome-wide associations)

Algorithmic opportunities



Dynamic runtimes for HPC implementations
• Uses task graph of sequential code
• Ensures that data dependencies are respected
• Schedules the tasks across appropriate available hardware resources
• Optimizes memory placement for nonuniform access
• Enhances software productivity by abstracting the hardware
• Examples (available for shared memory, distributed memory, and GPUs):

- StarPU
o INRIA, Bordeaux
o Unified runtime for heterogeneous multicore arch

- OmpSs
o BSC, Barcelona 
o Pragma-based, extending OpenMP to asynch execution

- PaRSEC
o ICL, University of Tennessee
o Parallel runtime scheduling and execution control



Example: covariance matrices from spatial statistics

• Climate and weather applications have many measurements located regularly 
or irregularly in a region; prediction is needed at other locations

• Modeled as realization of Gaussian or Matérn spatial random field, with 
parameters to be fit

• Leads to evaluating, inside an optimization loop, the log-likelihood function 
involving a large dense (but data sparse) covariance matrix 𝛴

• Apply inverse 𝛴-1 and determinant | 𝛴 | with Cholesky



Synthetic scaling test

Random coordinate generation within the unit square or unit cube with 
Matérn kernel decay, each pair of points connected by square exponential 
decay, aij ~ exp (-c|xi - xj|2)

2D 3D



TLR vs. Intel MKL on shared memory
Red arrows: 
speedups from 
hardware, 
same algorithm

Green arrows: 
speedups from 
algorithm, 
same hardware

Blue arrow:
from both

classical

tile low rank
w/StarPU

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

NB: log scale

• Gaussian kernel to accuracy 1.0e-8 in each tile
• Three generations of Intel manycore (Sandy Bridge, Haswell, Skylake)
• Two generations of linear algebra (classical dense and tile low rank) 

HiCMA TLR vs. Intel MKL on shared memory



4 TB

1 to 2 orders of 
magnitude less, 
depending upon 
accuracy (x-axis)

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, EuroPar 2018

NB: log scale

Memory footprint for TLR fully DP matrix of size 1M



Nearly 2 orders of 
magnitude for 0.5M size 
matrix on 16 nodes

HiCMA vs. ScaLAPACK on distributed memory

Green arrow: 
speedup from 
algorithm, 
same 16 nodes

NB: log scale

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

Shaheen II at KAUST: a Cray XC40 system with 6,174 compute nodes, each of which has two 16-core Intel Haswell CPUs 
running at 2.30 GHz and 128 GB of DDR4 main memory

HiCMA TLR vs. ScaLAPACK on distributed memory



Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

• Tile low rank has a higher percentage of idle time (red) 
vs. computation (green), relative to flop-intensive dense

• Scales less efficiently relative to itself (less able to cover 
data motion with computation)

• However, for an acceptable accuracy, it is 10X superior in 
time and energy

18.1 s

1.8 s

Comparing execution traces for Cholesky factorization

original

TLR

c
o
r
e
s

c
o
r
e
s

time



64000

Cholesky factorization of a TLR matrix derived from Gaussian covariance of random 
distributions, up to 42M DOFs, on up to 4096 nodes (131,072 cores) of a Cray XC40
• would require 7.05 PetaBytes in dense DP (using symmetry)
• would require 77 days by ScaLAPACK (at the TLR rate of 3.7 Pflop/s)

Millions of DOFs
Cao, Pei, Akbudak, Mikhalev, Bosilca, Ltaief, K. & Dongarra, Extreme-Scale Task-Based Cholesky Factorization Toward Climate 
and Weather Prediction Applications. PASC‘20 (ACM)

NB: log scale

Extreme Tile Low Rank

Fully dense 
computation 
would have cost 
about $1.03M in 
electricity and 
generated about 
2500 metric tons 
of CO2e



Peak Performance in TF/s V100 NVLink A100 NVLink H100 SXM

FP64 7.5 9.7 34

FP32 19.5 67

FP64 Tensor Core 15 19.5 67

FP32 Tensor Core 156 495

FP16 Tensor Core 120 312 989

Motivations for mixed precision
• Mathematical: (much) better than “zero precision”

– Statisticians often approximate remote diagonals as zero after performing a diagonally clustered 
space-filling curve ordering, so their coefficients must be orders of magnitude down from the 
diagonals

– not just smoothly decaying in the low-rank sense, but actually small
• Computational: faster time to solution

– hence lower energy consumption and higher performance, especially by exploiting heterogeneity

16x8x 16x

rel. 2017                    rel. 2020                  rel. 2023



Mixed precision geospatial statistics on GPUs

• Gaussian kernel to accuracy 1.0e-9 in each tile 
• Three generations of NVIDIA GPU (Pascal, Volta, Ampere)
• Two generations of linear algebra (double precision and mixed DP/HP) 

Ltaief, Genton, Gratadour, K. & Ravasi, 2022, Responsibly Reckless Matrix Algorithms for HPC Scientific 
Applications, Computing in Science and Engineering



Mixed precision geospatial statistics on distributed memory

Cao et al., Extreme-Scale Task-Based Cholesky Factorization Toward Climate and Weather Prediction Applications, ACM PASC’20
Abdulah et al., Accelerating Geostatistical Modeling and Prediction With Mixed-Precision Computations, IEEE TPDS’21

• Covariance matrices from 3D geospatial statistics
• Different mixes of DP (from 100% to 1%), SP, and HP on three architectures
• Speedups up to ~2.5X

1536 nodes of HAWK (AMD)4096 nodes of Shaheen-2 (Intel) 128 nodes of Summit (NVIDIA)



Geostatistical 
Modeling and Inference 

at Extreme Scales
via Tile Low Rank and Mixed Precision

Sameh Abdulah
Rabab Alomairy
Pratik Nag
Hatem Ltaief
Ying Sun
Marc Genton
David Keyes

Extreme Computing 
Research Center, KAUST

Qinglei Cao
Yu Pei
George Bosilca
Jack Dongarra *

Innovative Computing 
Laboratory, UTK

* 2022 Turing Award Recipient

2022 Gordon Bell Prize finalist story



Finalist paper

Performance 
results herein 
are not final, to 
be improved 
with more access 
to tune on a top 
system



Space and space-time modeling using Maximum Likelihood Estimation 
(MLE) on two environmental datasets

App: spatial & spatio-temporal environmental statistics
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• Predicts quantities directly from data (e.g., weather, climate)
– assumes a correlation model
– data may be from observations or from first-principles simulations
– statistical alternative to large-ensemble simulation averages

• Relied upon for economic and policy decisions
– predicting demands, engineering safety margins, mitigating hazards, 

siting renewable resources, etc.
– such applications are among principal supercomputing workloads

• Whereas simulations based on PDEs are usually memory 
bandwidth-bound, emulations based on covariance matrices are 
usually compute-bound (achieve a high % of bandwidth peak)

Statistical “emulation” (complementary to simulation)



• Contemporary observational datasets can be huge
– Collect p observations at each of n locations Zp(xn,yn,zn,tn)
– Find optimal fit of the observations Z to a plausible function
– Infer values at missing locations of interest

• Maximum Likelihood Estimate (MLE)
– model for estimating parameters required to perform inference

• Complexity:
– Arithmetic cost: solve systems with and calculate determinant of n-by-n

covariance matrix
– 𝑂((𝑝𝑛)!) floating-point operations and 𝑂((𝑝𝑛)")memory
– Memory footprint: 10# locations require 4 TB memory (double precision, 

invoking symmetry, for p	=1)

The computational challenge opportunity



Motivation: High Performance Computational Statistics (HPCS)

“Increasing amounts of data are being produced (e.g., by remote 
sensing instruments and numerical models), while techniques to 
handle millions of observations have historically lagged behind… 
Computational implementations that work with irregularly-spaced 
observations are still rare.”  - Dorit Hammerling, NCAR, July 2019

1M ✕ 1M dense sym DP matrix requires 4 TB,  N3 ~ 1018 Flops 

Traditional approaches:
Global low rank
Zero outer diagonals

Better approaches:
Hierarchical low rank
Reduced precision outer 

diagonals



Is this problem important?

The potential for this combination in spatial statistics generally is
high… The authors have demonstrated controllable and high
accuracy typical of universal double precision, while exploiting
mostly half precision, and keeping relatively few tiles clustered
around the diagonal in their original fully dense format. The
result is reduction in time to solution of an order of magnitude or
more, with the ratio of improvement growing with problem size,
but already transformative.
-- Professor Sudipto Banerjee, UCLA



Is this problem important?

The innovations described in numerical linear algebra and in dynamic
runtime task scheduling deliver an order of magnitude or more of
reduction in execution time for a sufficiently large spatial or spatial-
temporal data set using the Maximum Likelihood Estimation (MLE) and
kriging paradigm. Perhaps more importantly, by reducing the memory
footprint of such models, they allow much larger datasets to be
accommodated within given computational resources. The advance
this creates for spatial statisticians – geophysical and otherwise – is
potentially immense, given that this result is now available through
ExaGeoStat.
--Professor Doug Nychka, Colorado School of Mines



Is this problem important?

An especially attractive aspect of the submission is the innovation that
it required in the a64fx ARM architecture of Fugaku, namely the
accumulation in 32 bits of the 16-bit floating point multiply. I regard
this aspect of the KAUST-UT-RIKEN collaboration of abiding benefit
beyond the particular application of this submission.
As you know, my mottos for data science are that “Statistics is the
‘Physics’ of Data” and “Statistics is to Machine Learning as Physics is to
Engineering.” Your Gordon Bell campaign is accelerating the use of
spatial statistics to allow it to keep up with exascale hardware.
-- Dr. George Ostrouchov, ORNL



https://github.com/ecrc/exageostat

Prediction Accuracy using Space-Time model

• Supports large-scale geo-spatial datasets (univariate/bivariate).
• Estimates the maximum likelihood using synthetic and real datasets.
• Leverages the data sparsity structure of the matrix operator.
• Performs matrix computations at tunable accuracies using Diagonal

Super-Tile (DST) and Tile Low-Rank (TLR) approximations as well as
mixed-precision (MP) calculations.

• Predicts observations using dense, DST, TLR, and MP techniques
and reveals insights from environmental Big Data applications.

A collaboration with With support from Sponsored by

HIGH PERFORMANCE UNIFIED SOFTWARE 
FOR GEOSTATISTICS ON MANY-CORE SYSTEMS

The ExaGeoStat project is a high performance software package for computational geostatistics on many-core systems. The Maximum
Likelihood Estimation (MLE) method is used to optimize the likelihood function for a given spatial set. MLE provides an efficient way to
predict missing observations in the context of climate/weather forecasting applications. This machine learning framework deploys a
unified software stack to target various hardware architectures with a single-source simulation code, from commodity x86 to GPU-
based shared and distributed-memory systems. At large-scale problem sizes, ExaGeoStat further exploits the data sparsity of the
covariance matrix to address the curse of dimensionality. In particular, ExaGeoStat supports Tile Low-Rank (TLR) approximation and
mixed-precision computations to model univariate, multivariate space and space-time problems. This translates into a reduction of the
memory footprint and the algorithmic complexity of the MLE operation, while still maintaining the overall fidelity of the underlying model.

ExaGeoStat v1.1.0
Dense

TLR Accuracy Impact on Parameter Estimates, Bivariate Case

4096 Shaheen-II Cray XC40 Nodes 1536 Hawk AMD EPYC Nodes

• Support for out-of-core algorithms.

• Assist the convergence of MLE
with a prediction phase.

• Deploy the PaRSEC runtime system.

• Combine TLR with MP to accelerate
MLE for larger problem sizes.

• Model space-time, non-Gaussian,
and non-stationary geospatial data.

Computing the Cholesky-Based MLE Method

• Real dataset: (MERRA-2) re-analyses dataset of hourly PM 2.5 measurements from NASA Earth data.
• Data description: an hourly dataset for four years (2016- 2019) with a total size of 550 spatial locations.
• Extreme Gaussian geostatistical spatio-temporal computations.

Software Infrastructure

Samples of the Training Datasets (Year: 2016)

Space-Time Modeling Prediction

Mixed-Precision Performance on Distributed-Memory Systems

128 Summit IBM/NVIDIA V100 Nodes

TLR Multivariate Spatial Modeling Performance and Accuracy

Current Research

DST TLR MP

ER=0.1 ER=0.3 ER=0.7

Acc=1e-5 Acc=1e-7 Acc=1e-9 Dense

128 Shaheen-II Cray XC40 Nodes

References
Ø S. Abdulah, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. ExaGeoStat: A High Performance Unified Software for Geostatistics on Manycore Systems. IEEE Transactions on Parallel and Distributed Systems. 29(12):2771-84. 2018.
Ø S. Abdulah, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. Parallel Approximation of the Maximum Likelihood Estimation for the Prediction of Large-Scale Geostatistics Simulations. IEEE International Conference on Cluster Computing. pp. 98-108. 2018.
Ø S. Abdulah, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. Geostatistical Modeling and Prediction Using Mixed Precision Tile Cholesky Factorization. IEEE 26th International Conference on High Performance Computing, Data, and Analytics. pp. 152-162. 2019.
Ø S. Abdulah, Y. Li, J. Cao, H. Ltaief, D.E. Keyes, M.G. Genton, Y. Sun. ExaGeoStatR: A Package for Large-Scale Geostatistics in R. arXiv preprint arXiv:1908.06936. 2019.
Ø M.L. Salvaña, S. Abdulah, H. Huang, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. High Performance Multivariate Spatial Modeling for Geostatistical Data on Manycore Systems. arXiv preprint arXiv:2008.07437. 2020.

Sameh Abdulah, 
Research Scientist 

ECRC, KAUST



• Synthetic Dataset Generator
– Generates large-scale geospatial datasets which 

can be used separately as benchmark datasets 
for other software packages

• Maximum Likelihood Estimator (MLE)
– Evaluates the maximum likelihood function on 

large-scale geospatial datasets
– Supports dense full machine precision, Tile Low-

Rank (TLR) approximation, low-precision 
approximation accuracy, and now TLR-MP

• ExaGeoStat Predictor
– Infers unknown measurements at new geospatial 

locations from the MLE model

ExaGeoStat’s 3-fold framework



The portable ExaGeoStat software stack

#89 Shaheen-2Intel X86

#1 Fugaku
Fujitsu A64FX

#2 Summit
NVIDIA V100

#24 HAWK
AMD EPYC



• The log-likelihood function:

• Optimization over 𝜽 to maximize the likelihood function estimation 
until convergence
– generate the covariance matrix 𝞢(𝝷 ) using a specified kernel
– evaluate the log determinant and the inverse operations, which require 

a Cholesky factorization of the given covariance matrix
– update 𝝷

• NLOPT* is typically used to maximize the likelihood
• Parallel PSwarm optimization algorithm runs several likelihood 

estimation steps at the same time (an embarrassingly parallel outer 
loop)

Maximum Likelihood Estimator (MLE)

*open-source library by Prof. Steve Johnson of MIT



Covariance functions supported in ExaGeoStat

Univariate Matern Kernel

Multivariate Parsimonious Kernel 

Space/Time Nonseparable Kernel 

Tukey g-and-h Non-Gaussian Field with Kernel 

Multivariate Flexible Kernel Powered Exponential Kernel

(6 parameters to fit, add: time-range, time-smoothness, and separability)(3 parameters to fit: variance, range, smoothness)



How to choose the rank?

• Tiles are compressed to low rank based on user-supplied tolerance 
parameter, based on the first neglected singular value-vector pair.

• A tile-centric, structure-aware heuristic decides at runtime whether 
the tile should remain in low rank form or converted back to dense, 
based on estimates of the overheads of maintaining and operating 
with the compressed form.

• The structure-aware runtime decision is based only the estimated 
number of flops and time to solution, while the precision-aware 
runtime decision (next slide) is based only on the accuracy 
requirements of representing the matrix in the Frobenius norm.



How to choose the precision?

Higham & Mary, Mixed Precision Algorithms in Numerical Linear Algebra (2022), Acta Numerica, pp. 347-414

• Consider 2-precision case, with machine epsilons (unit roundoffs) uhigh and 
ulow , resp.

• Let  || A ||F be the Frobenius norm of the global matrix square matrix A, 
which is computable by streaming A through just once

• Let nT be the number of tiles in each dimension of A
• Then any tile Aij such that   nT  || Aij ||F / || A ||F <  uhigh / ulow   is stored in low 

precision; otherwise kept in high
• The mixed precision tiled matrix  A thus formed satisfies 

||A - A ||F <  uhigh || A ||F 

• Generalizes to multiple precisions
• Tiles can be converted dynamically at runtime
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Accuracy on real 3D (2D space + time) dataset

mean-square 
prediction error



Performance on up to 16K nodes of Fugaku

~3x less time for same size

~3x greater size for same time

To be improved:

Still tuning runtime 
system PaRSEC on 
Fugaku’s 32GB/node



Tile map for 2D space kernel with ~1M points

weak correlation strong correlation

370 tiles of size 2700 in each dimension

memory footprint 
1.6 TB

memory footprint 
0.9 TB

memory footprint 
3.8 TB

memory footprint 
1.8 TB

default dense double is ~4 TB



Hourglass model of software

https://github.com/ecrc/hicma



Conclusions recapped

In a world of environmental and financial constraints, in which computational 
infrastructure demands a growing sector of lab budgets and global energy 
expenditure, HPC must address the need for greater efficiency.

HPC has excelled at this historically in
• hardware
• algorithms
• redefining actual outputs of interest in applications

There are new algorithmic opportunities in
• reduced rank representations
• reduced precision representations



• Parallel Approximation of the Maximum Likelihood Estimation for the Prediction of Large-
Scale Geostatistics Simulations, S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton & D. Keyes, 2018 
IEEE International Conference on Cluster Computing (CLUSTER), 2018, pp. 98-108, doi: 
10.1109/CLUSTER.2018.00089.

• Hierarchical Algorithms on Hierarchical Architectures, D. Keyes, H. Ltaief & G. Turkiyyah, 
2020, Philosophical Transactions of the Royal Society, Series A 378:20190055, doi 
10.1098/rsta.2019.0055

• Responsibly Reckless Matrix Algorithms for HPC Scientific Applications, H. Ltaief, M. G. 
Genton, D. Gratadour, D. Keyes & M. Ravasi, 2022, Computing in Science and Engineering, 
doi 10.1109/MCSE.2022.3215477

• Reshaping Geostatistical Modeling and Prediction for Extreme-Scale Environmental 
Applications, Q. Cao, S. Abdulah, R. Alomairy, Y. Pei, P. Nag, G. Bosilca, J. Dongarra, M. G. 
Genton, D. E. Keyes, H. Ltaief & Y. Sun, 2022, in proceedings of the International Conference 
for High Performance Computing, Networking, Storage, and Analysis (SC'22), IEEE Computer 
Society (ACM Gordon Bell Finalist, to appear).

• Mixed Precision Algorithms in Numerical Linear Algebra, 2022, N. J. Higham & T. Mary, Acta 
Numerica, pp. 347—414, doi:10.1017/S0962492922000022.

For follow-up
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Want to contribute to computationally efficient infrastructure?

• Contributions are required up and down the software tool chain of 
many applications.

• The HiCMA group in the Extreme Computing Research Center at 
KAUST periodically has post-doc openings.

• Please enquire of Principal Research Scientist Hatem Ltaief, if 
interested, at

hatem.ltaief@kaust.edu.sa




